海水中含有氯化钠等无机盐,这些盐类使海水变得又咸又苦。渴时喝下去不但不能解渴,反而更会口干舌燥。盐类会和金属起化学反应,使金属受到腐蚀。钢铁尤其怕海水,完好的钢材放在海水中,不用很长时间就被腐蚀得面目全非。铝在大气中表面会生成坚硬的氧化层,能保护内部,而在海水中,铝的氧化层也丧失了保护力。真正能够耐受海水浸泡的只有铁,不锈钢和铜合金也有一定的抗海水腐蚀的能力。海水受热以后,一部分盐会结晶出来,附着在容器表面。海水中的附着生物,像藻类、软体动物、甲壳动物和腔肠动物等也会长在通海水的管道和设备的壁上。这些附着物使这些设备传热能力大大降低,甚至被堵塞。
从苦咸的海水中提取淡水的技术叫做海水淡化,也称海水脱盐。
古希腊罗马时代有人做过海水淡化的尝试,亚里士多德用封闭的容器把海水烧开,发现水蒸气里没有盐分,把它冷凝就得到蒸馏水,是纯净的淡水。19世纪英国曾批准用蒸馏法制淡水的专利,在阿拉伯的亚丁湾海滨陆地上建造海水蒸馏器制造淡水,供给过往的船员。到2006年,世界上已有120多个国家和地区在应用海水淡化技术,全球海水淡化日产量约3775万吨。
目前世界海水淡化装置主要分布在沿海的干旱地区、淡水供应困难的岛屿和沿海缺水的大工业城市。最集中的地区是以色列和沙特阿拉伯、科威特和阿拉伯联合酋长国等,这些国家没有河流,地下水也奇缺。过去靠用船从国外运来淡水。幸好这些国家有丰富的石油,有条件用石油当燃料蒸馏海水,解决淡水供应问题。
主要的海水淡化技术有蒸馏法、反渗透法和电渗析法。
蒸馏法实际上还是用亚里士多德阐述的原理,把海水加热使它汽化,再使蒸汽冷凝,得到淡水,剩下的浓盐水另做它用。蒸馏法使水汽化与盐分离,不管从多么浓的海水中都能蒸馏出很纯的淡水,一次成功,所以适合于直接淡化海水。现在已经能用这种技术建造大规模的海水淡化厂,是最重要的一种海水淡化方法。
蒸馏法也有多种做法,用得最多的是多级闪蒸法。先把海水在管子里加热,然后把海水引进压力比大气压力低的设备中。压力降低,水的沸点也降低,不需要到100℃就汽化了。于是海水在这个低压容器里急速汽化,蒸汽迅速离开热海水,固态的盐类留在剩下的液体中,不会留在换热面上。产生的蒸汽在换热管外冷凝成淡水,海水在管内吸收冷凝时放出的热而被预先加热。海水这样依次通过多个闪蒸室,每个室内的冷凝管上都生成淡水。重复进行多次闪蒸过程,能够最有效地利用热量,降低成本,使这种办法成为现实可行的技术。
闪蒸室可以用便宜的低碳钢做成,外面包上不锈钢之类的合金保护,防止腐蚀。冷凝器是最关键的部件,而且温度最高,最容易被腐蚀,得用钛或铜镍合金等防腐材料做。海水中还得加进阻止结垢的化学物质,使剩下的盐不致附着在设备壁上。把各级闪蒸室垂直地叠在一起,效果更好。
多效蒸发法是另一种蒸馏法,它使导热面的两面一边是蒸汽一边是水,蒸汽在上面冷却,水在下面加热,一举两得。不过用这种办法时,结垢问题比多级闪蒸法严重,得想办法解决。
低温多效蒸发法能利用37~65℃的温度淡化,需要的热量少,能用电厂废热供给。有可能用太阳能作为能源,或者直接加热海水,或者把热量储存在太阳能池里再用,这样可以不必燃烧化石燃料。直接利用时把水池壁涂黑,使它能最大限度地吸收太阳能,使水汽化,然后在池上方的玻璃壁上冷凝,加上多效的原理,提高热量的利用率。储存的办法则使太阳能把集热管里的水加热,把热水储存在太阳能池里,热水是很好的热源。太阳能淡化器的投资比较高,因而限制了它的使用。
反渗透法海水淡化,是用压力驱使海水通过反渗透膜,膜的微孔很小,水的分子比较小,可以顺利地通过,而把分子较大的盐留在膜后面。这种淡化技术近来发展得很快,在它的基础上又发展了超滤技术。反渗透法的关键是在膜上。膜既要能透水留盐,又要能经得起高压的水流过而不致损坏。这种膜是用高分子材料做成的。醋酸纤维素膜的材料来源丰富,价格便宜,可是不耐用,脱盐的效果也不理想,不宜于直接淡化海水。聚酰胺膜的机械强度比较高,脱盐的效果比较好。聚砜高分子膜是一种复合反渗透膜,本身包含有效层和支持层,性能更好。这些高分子材料可以纺成纤维,织成膜。叠成平板形的膜不能耐压;卷成管状、螺旋管状最结实,能承受压力;做成中空纤维的效果最好。在海水通过膜之前,要先进行前处理,灭菌、除污和加化学药剂调节酸碱度,否则海水很快就会把反渗透膜堵塞,使它不能工作。反渗透法脱盐的效果与海水的盐度有关,有时一级反渗透脱盐还不足以制出合格的淡水,需要二级脱盐。反渗透法不需要热源,只需要电力驱动高速旋转高压泵把海水加压。目前新材料层出不穷,有了更理想的膜材料,这种淡化方法的效率会更高,成本也还能降下来。
电渗析法也是用膜把水和盐分开的技术,但是这种膜要在电场的作用下才有淡化的本领。在电渗析槽内插上阴阳离子交换膜和隔板,充进海水,加上直流电场,海水里的电解质就被电解,里面的阴阳离子分别通过交换膜跑掉,留下的水中就不含盐了。用隔板隔开,可以在一个电渗析槽内装多组膜。膜的材料也是高分子聚合材料——聚苯乙烯磺酸和聚苯乙烯季胺。电渗析法的耗电量与海水的浓度成正比,所以这种办法最好用在浓度较低的地下苦咸水淡化中,如果用来淡化海水,一级淡化效果不好,需要多级淡化,成本就高了。我国1981年在西沙群岛永兴岛上建了一座日产200吨淡水的电渗析淡化站,一直工作到现在。
水有很特殊的性质,汽化时不会把溶质带出来,结冰时也不会把溶质带出来。利用这个性质,与蒸馏法相反,不把海水汽化,而用冷冻海水的方法也可以达到淡化的效果。冰融为水所需要的热量只有水蒸发为汽所需要的热量的13%,可以节约大量能源。另外,低温下盐对容器的腐蚀不像在高温下那么严重,所以冰冻法可能将来还会有发展。如果仿照多效蒸馏的办法,把冰冻和蒸发相结合,可以更有效地利用热量。
现在海水淡化的真正问题还是成本过高。最初的海水淡化是烧1吨油换1吨水,那就不如用船运淡水了,除非迫不得已,谁也用不起淡化水。自从有了上述的新技术以后,情况要好得多。截至2006年底,我国日淡化海水能力接近15万吨,海水淡化成本逐步下降,已接近5元/立方米。要使淡化更加实用,还得继续努力开发新技术,研制出效率更高、更耐久的膜,在工艺上巧用多级、多效等方法,更有效地利用能量,以及利用太阳能、风能、地热能和海洋能等可再生能源作为动力。
大陆架上有很多古河道,在海面上升时被海水淹没,这些古河道下的沙层中藏有大量的淡水。有些地方虽然没有古河道,可是海底地层里有地下水。这也是重要的淡水水源。用卫星遥感的方法可以找到海底淡水储藏在什么地方,再用浅地层剖面仪探查海底地层,详细调查沉积物里淡水的分布。在淡水露头的地方可以直接用潜水泵抽取,在没有露头的地层上可以探明含水构造,然后打井抽淡水。这种水源利用起来可能比海水淡化还经济。美国开发海底淡水解决了夏威夷的城市用水,希腊在爱琴海成功地开发了一处日产淡水100多万立方米的海底涌泉,灌溉了沿海3万公顷旱地。我国长江口古河道中有很丰富的海底淡水,现在已经对资源做了周密的调查,还在长江口外的嵊泗列岛开始开发。将来全面开发这个淡水资源将能解决舟山群岛的淡水供应问题。
地球上绝大部分淡水都冻结在南极洲和格陵兰等北极岛屿的冰盖里,冰盖边缘不断断裂成冰山后漂流出来。全球冰盖的淡水量等于地表水和地下水总量的3.35倍。能不能把冰山用拖船拖运到缺水的沿海港口,融化成淡水使用呢?有人曾做过这种试验,把南极洲附近的冰山拖到南美洲。人们发现利用冰山淡水有很多困难:形状不规则的冰山在拖运时阻力很大,费力拖到目的地后,很难把它融化,也不容易把融化后的水收集起来,融化时吸收大量的热,还会使气候变化,破坏当地的生态环境。
虽然已经有这么多的办法和设想向海洋要淡水,可是仍然没有找到一个十全十美,既有效又经济可行的办法。这个问题只有留待今后去解决了。