在俄国,经科学院院士切比雪夫极力举荐苏菲去大学教书,但仍没有成功。后来,还是在魏尔斯特拉斯的瑞典学生帮助下,才使她有幸在斯德哥尔摩一所大学当数学讲师。
1888年,法国巴黎科学院悬赏解题——“刚体绕固点旋转的问题”,这是数学大师欧拉和拉格朗日长期感到棘手的问题。学术委员会采用密封评选的办法,在应征的15篇论文中,选出了一篇最出色的予以奖励,奖金5000法朗。
打开选中的试卷一看,获奖者竟是俄国女性苏菲。
苏菲获此奖励在法国学术界轰动一时,她成为第一个跨进法国科学院大门的奇女子。她在偏微分方程方面很有建树。在此期间,她完成了法国大数学家柯西的一项研究,偏微分方程理论的一个重要基本定理“柯西——柯瓦列夫斯卡娅定理”,就是以柯西和苏菲二人的名字命名的。
苏菲获奖的第二年,斯德哥尔摩学院授予她一笔高额奖金,又正式任命她为大学教授。可是,守旧势力是顽固的。
瑞典的著名作家特林倍格就此撰文说:“女人担任数学教授是奇怪的、有害的、难堪的现象。”但苏菲却以她出色的教学成绩,赢得了学生们的爱戴和尊敬。仅用一年时间,她就能用流畅的瑞典语讲课了。最终,瑞典人信服了她。
1891年,历经坎坷的苏菲在瑞典逝世,年仅41岁,人们把她安葬在斯德哥尔摩,表示对她永久景仰。
苏菲死后,她的大脑按北欧人的特殊习惯,进行了解剖研究,据说4年后,医生把她的大脑与德国大物理学家赫尔霍兹的脑量比较,发现她的大脑在比例上大于一般男人。
毕达哥拉斯的数学成就
无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的古希腊数学家、哲学家毕达哥拉斯(公元前572—前497年)。
毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明甚至中国文明的丰富营养,大约在公元前530年又返回萨摩斯岛。后来又迁居意大利南部的克罗通,创建了自己的学派,一边从事教育,一边从事数学研究。
毕达哥拉斯和他的学派在数学上有很多创造,尤其是对整数的变化规律感兴趣。例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28,496等),而将本身大于其因数之和的数称为盈数;小于其因数之和的数称为亏数。他们还发现了“直角三角形两直角边平方和等于斜边平方”,西方人称之为毕达哥拉斯定理,我国称为勾股定理。当今数学上又有“毕达哥拉斯三元数组”的概念,指的是可作为直角三角形三条边的三数组的集合。
在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。
毕达哥拉斯学派认为数最崇高,最神秘,他们所讲的数是指整数。“数即万物”,也就是说宇宙间各种关系都可以用整数或整数之比来表达。但是,有一个名叫希帕索斯的学生发现,边长为1的正方形,它的对角线2却不能用整数之比来表达。这就触犯了这个学派的信条,于是规定了一条规律:谁都不准泄露存在2(即无理数)的秘密。天真的希帕索斯无意中向别人谈到了他的发现,结果被杀害。但2很快就引起了数学思想的大革命。科学史上把这件事称为“第一次数学危机”。希帕索斯为2殉难留下的教训是:科学是没有止境的,谁为科学划定禁区,谁就变成科学的敌人,最终被科学所埋葬。
第一个算出地球周长的人
2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼(约公元前275—前194年)。
埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。
细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因为这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于严历山大城的阳光与直立和形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,地球的周长大约为4万公里,这是实际地球周长(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。还计算出太阳与地球间的距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的尝试说和智慧。埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著。书中描述了地球的形状、大小和海陆分布。埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。
业余数学家之王——费马
17世纪的一位法国数学家,提出了一个数学难题,使得后来的数学家一筹莫展,这个人就是费马(1601—1665年)。
这道题是这样的:当n>2时,xn+yz=zn没有正整数解。在数学上这称为“费马大定理”。为了获得它的一个肯定的或者否定的证明,历史上几次悬赏征求答案,一代又一代最优秀的数学家都曾研究过,但是300多年过去了,至今既未获得最终证明,也未被推翻。即使用现代的电子计算机也只能证明:当n≤4100万时,费马大定理是正确的。由于当时费马声称他已解决了这个问题,但是没有公布结果,于是留下了数学难题中少有的千古之谜。
费马生于法国南部,在大学里学的是法律,以后以律师为职业,并被推举为议员。费马的业余时间全用来读书,哲学、文学、历史、法律样样都读。30岁时迷恋上数学,直到他64岁病逝,一生中有许多伟大的发现。不过,他极少公开发表论文、著作,主题通过与友人通信透露他的思想。在他死后,由儿子通过整理他的笔记和批注挖掘他的思想。好在费马有个“不动笔墨不读书”的习惯,凡是他读过的书,都有他的圈圈点点,勾勾画画,页边还有他的评论。他利用公务之余钻研数学,并且成果累累。后世数学家从他的诸多猜想和大胆创造中受益非浅,赞誉他为“业余数学家之王”。
费马对数学的贡献包括:与笛卡尔共同创立了解析几何;创造了作曲线切线的方法,被微积分发明人之一牛顿奉为微积分的思想先驱;通过提出有价值的猜想,指明了关于整数的理论——数论的发方向。他还研究了掷骰子赌博的输赢规律,从而成为古典概率论的奠基人之一。
康托尔的数学成就
伽利略曾作过这样的证明:DE是△ABC的中位线,DE=12BC,通过A引任意一条直线,必然有DE上的P′和BC上P一一对应,因此,DE所包含的点与BC所含的点“一样多”,导致结论:DE=BC,1=2。这是一个数学悖论。
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。1874—1876年期间,不到30岁的年轻德国数学家康托尔(1845—1918年)向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的一点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”!后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。
真金不怕火炼,康托尔的思想终于大放光彩。1897年举行第一次国际数学家会议上,他的成就得到承认。伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”。可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
康托尔生于俄国彼得堡一个丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。23岁获博士学们,以后一直从事数学教学研究。他所创立的集合论已被公认为全部数学的基础。
全能数学家——彭加勒
一位数学史权威评价彭加勒(1854—1912年)时说,他是“对于数学和它的应用具有全面知识人的最后一个人。”20世纪以来,数学进入了多学科、高难度的现代阶段,要想达到每个领域的最高成就已经不可能,但彭加勒确实是他那个时代的数学全才。
一般把数学划分为算术、代数、几何和分析四个领域,彭加勒对各个领域的研究成果,都是第一流的。他成功地解决了像太阳、地球、月亮间相互运动这一类的三体问题;他是现代物理的两大支住——相对论和量子力学的思想先驱;他研究科学哲学提出的“约定论”着重分析了人类理性认识的基本法则,日益受到当代哲学家的重视。在他从事科学研究的34年里,发表论文500篇,著作30多部,获得过法国、英国、俄国、瑞典、匈牙利等国家的奖赏,被聘为30多个国家的科学院院士。
1912年6月26日,彭加勒病逝前20天作了最后一次讲演,他说:“人生就是持续斗争。”彭加勒的一生就是斗争的一生。他因为小时候得过病,语言不够流畅,写字画图都有困难;还留下了喉头麻痹身体虚弱的后遗症。不少人把他当作笨人。他成为数学家后,一位心理学家通过测验仍然认定他是“笨人”。彭加勒取得成就的关键是注意力高度集中。他一生最大的嗜好就是读书,读书速度快,记忆准确持久。因为视力不好,书写困难,他上课不记笔记,全神贯注于听讲、思索、理解,长期的磨练,使他具备了运用大脑完成复杂运算,构思长篇论文的能力。1871年,17岁的彭加勒报考高等工业学校,轻松地解决了主考官特意为他设计的难题,尽管他的几何作图得了零分,学校也破格录取。1879年,25岁的彭加勒获数学博士学位,32岁任数学和物理学教授,以后在科学园地里辛勒耕耘26年。
20世纪数学的指路人——希尔伯特
1900年8月8日,在巴黎第二届国际数学家大会上,德国的希尔伯特(1862—1943年)提出新世纪数学家应当努力解决的23个问题。从那以后,全世界几乎所有的数学家,都被他吸引。这23个问题成为本世纪数学学科发展的缩影。这些问题的研究有力地推动了20世纪数学的发展。
希尔伯特的工作涉及许多数学基本问题。19世纪中叶以后,与通常的欧几里德几何不同的非欧几何出现后,暴露了几千年来被认为非常严密的欧几里德几何的缺陷,需要改进。希尔伯特的巨著《几何学基础》,提出了一个更为来谨完整的几何公理系统,并引志了20世纪初为建立各个数学分支牢固基础而努力的“以量化运动”。
他在1900年提出的23个数学问题,被认为是本世纪数学的制高点,在世界上产生了深远的影响。著名的哥德巴赫猜想也是问题之一,以陈景润为代表的中国数学家获得了重大突破,但还没有彻底解决。希尔伯特领导的数学派是上世纪末本世纪初数学界的一面旗帜,希尔伯特被称为“无冕的数学之王”。
希尔伯特生于普鲁士,从小对数学得心应手。他的一位亲戚回忆说,小希尔伯特的“作文”要靠妈妈帮助,可是却能给老师讲解数学难题。希尔伯特18岁进大学,23岁获博士学位。
希尔伯特不仅是位杰出的学者,而且是为思想自由、政治民主而斗争的战士,1943年2月14日与世长辞。后人在他的墓碑上镌刻着他的格言:“我们必须知道,我们必将知道。”
非欧几何创始人之一