书城科普读物走进科学丛书:科学发现的探索
28716200000016

第16章 圆面积之谜

怎样求圆面积?我们现在有公式可用,很快就算出来了。但是在漫长的年代里,人们为了研究和解决这个问题,不知遇到了多少艰难和困苦,花费了多少精力和时间。

割补求面积在平面图形中,以长方形的面积最容易求了。用大小一样的正方形砖铺垫长方形地面,如果横向用八块,纵向用六块,那一共就用了8×6=48块砖。所以求长方形面积的公式是:长×宽。

求平行四边形的面积,可以用割补的方法,把它变成一个与它面积相等的长方形。长方形的长和宽,就是平行四边形的底和高。所以求平行四边形面积的公式是:底×高。

求三角形的面积,可以对接上一个和它全等的三角形,成为一个平行四边形。这样,三角形的面积,就等于和它同底同高的平行四边形面积的一半。所以求三角形面积的公式是:12×底×高。

任何一个多边形,因为可以分割成若干个三角形,所以它的面积,就等于这些三角形面积的和。

四千多年前修建的埃及胡夫金字塔,底座是一个正方形,占地五万二千九百平方米。它的底座边长和角度计算十分准确,误差很小,可见当时测算大面积的技术水平很高。

古老的难题圆是最重要的曲边形。古埃及人把它看成是神赐予人的神圣图形。怎样求圆的面积,是数学对人类智慧的一次考验。

也许你会想,既然正方形的面积那么容易求,我们只要想办法做出一个正方形,使它的面积恰好等于圆面积就行了。你的想法很好,可是要做出这样的正方形很难啊。

你知道古代三大几何难题吗?其中的一个,就是你刚才想到的化圆为方。这个起源于古希腊的几何作图题,在两千多年间,不知难倒了多少能人,直到19世纪,人们才证明了这个几何题,是根本不可能用圆规和无刻度的直尺作出来的。

化圆为方这条路走不通,人们不得不开动脑筋,另找出路。

我国古代的数学家,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。

古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。

古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。

他们煞费苦心,巧妙构思,不怕困难,为求圆面积作出了十分宝贵的贡献。

酒桶的学问

16世纪的德国天文学家开普勒,是一个重视观察、肯动脑筋的人。他曾把丹麦天文学家第谷遗留下来的大量天文观测资料,认真地进行整理分析,提出了著名的“开普勒三定律”。开普勒第一次告诉人们,地球围绕太阳运行的轨道是一个椭圆,太阳位于其中的一个焦点上。

开普勒当过数学教师,他对求面积的问题非常感兴趣,曾进行过深入的研究。他想,古代数学家用分割的方法去求圆面积,所得到的结果都是近似值。为了提高近似的程度,他们不断增加分割的次数。但是,不管分割多少次,几千几万,只要是有限次,所求出来的总是圆面积的近似值。要想求出圆面积的精确值,必须分割无穷多次,把圆分成无穷多等分才行。

开普勒也模仿切西瓜的方法,把圆分割成许多小扇形;不同的是,他一上来就把圆分成无穷多个小扇形。

因为这些小扇形太小了,小弧AB也太短了,所以开普勒就把小弧AB和小弦AB看成是相等的,即AB=AB。

这样一来,小扇形AOB就变成为小三角形AOB了;而小三角形AOB的高就是圆的半径R。于是,开普勒就得到:

小扇形AOB的面积=小三角形AOB的面积=12R×AB。

圆面积等于无穷多个小扇形面积的和,所以圆面积S=12R×AB+12R×BC+12R×CD+…=12R×(AB+BC+CD+…)=12R×(AB+BC+CD+…)在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=12R×2πR=πR2这就是我们熟悉的圆面积公式。

开普勒运用无穷分割法,求出了许多图形的面积。1615年,他把自己创造的这种求面积的新方法,发表在《葡萄酒桶的立体几何》一书中。

这个奇怪的书名是有来由的。有一天,开普勒到酒店去喝酒,发现奥地利的葡萄酒桶,和他家乡莱茵的葡萄酒桶不一样。他想,奥地利葡萄酒桶为什么偏要做成这个样子呢?高一点好不好?扁一点行不行?这里面会不会有什么学问?经过研究,开普勒发现,当圆柱形酒桶的截面ABCD的对角线长度固定时,比如等于m,以底圆直径和高的比为2时体积最大,装酒最多。奥地利的葡萄酒桶,恰好是按这个比例做成的。这一意外发现,使开普勒非常高兴,决定给这本关于求面积和体积的书,起名为《葡萄酒桶的立体几何》。

在这本书中,开普勒除介绍了他求面积的新方法外,还介绍了他求出的近百个旋转体的体积。比如,他计算了圆弧绕着弦旋转一周,所产生的各种旋转体的体积。这些旋转体的形状,有的像苹果,有的像柠檬,有的像葫芦。

开普勒大胆地把圆分割成无穷多个小扇形,又果敢地断言:无穷小的扇形面积,和它对应的无穷小的三角形面积相等。他在前人求面积的基础上,向前迈出了重要的一步。

《葡萄酒桶的立体几何》一书,很快在欧洲流传开了。数学家高度评价开普勒的工作,称赞这本书是人们创造求面积和体积新方法的灵感源泉。

一种新的理论,在开始的时候很难十全十美。开普勒创造的求面积的新方法,引起了一些人的怀疑。他们问道:开普勒分割出来的无穷多个小扇形,它的面积究竟等于不等于零?如果等于零,半径OA和半径OB就必然重合,小扇形OAB就不存在了;如果它的面积不等于零,小扇形OAB与小三角形OAB的面积就不会相等。开普勒把两者看作相等就不对了。

面对别人提出的问题,开普勒自己也说不清楚。

卡瓦利里的方法

卡瓦利里是意大利物理学家伽利略的学生,他研究了开普勒求面积方法中的问题。

卡瓦利里想,开普勒把圆分成无穷多个小扇形,这每个小扇形的面积到底等于不等于零,就不好确定了。但是,只要小扇形还是图形,它是可以再分的呀。开普勒为什么不再继续分下去了呢?要是真的再细分下去,那分到什么程度为止呢?这些问题,使卡瓦利里陷入了沉思之中。

有一天,当卡瓦利里的目光落到自己的衣服上时,他忽然灵机一动:唉,布不是可以看成为面积嘛!布是由棉线织成的,要是把布拆开的话,拆到棉线就为止了。我们要是把面积也像布一样拆开,拆到哪儿为止呢?应该拆到直线为止。几何学规定直线没有宽度,把面积分到直线就应该不能再分了。于是,他把不能再细分的东西叫做“不可分量”。棉线是布的不可分量,直线是平面面积的不可分量。

卡瓦利里还进一步研究了体积的分割问题。他想,可以把长方体看成为一本书,组成书的每一页纸,应该是书的不可分量。这样,平面就应该是长方体体积的不可分量。几何学规定平面是没有薄厚的,这样想也是有道理的。

卡瓦利里紧紧抓住自己的想法,反复琢磨,提出了求面积和体积的新方法。

1635年,当《葡萄酒桶的立体几何》一书问世20周年的时候,意大利出版了卡瓦利里的《不可分量几何学》。在这本书中,卡瓦利里把点、线、面,分别看成是直线、平面、立体的不可分量;把直线看成是点的总和,把平面看成是直线的总和,把立体看成是平面的总和。

卡瓦利里怎样用不可分量求面积的呢?现在以椭圆为例,介绍如下:椭圆有一条长轴和一条短轴,如图相交于O,把椭圆分成了四等份。

卡瓦利里设a和b是长轴和短轴的一半;以椭圆中心O为圆心,以b为半径,在椭圆内作一个圆。

他根据不可分量的想法,把椭圆面积的四分之一,看成是由无穷多条平行于a的线段组成,每一条线段与圆交于一点。

卡瓦利里根据椭圆的性质推出,任一条和a平行的线段MN,与圆交于P,一定有MPMN=ba他把这样引出的无穷多条平行线段,由小到大编上M1N1,M2N2,M3N3,…就可以得到一大串比例式M1P1M1N1=M2P2M2N2=M3P3M3N3=…=ba比例有这样一个性质:如果ab=cd成立,那么a+cb+d=cd也成立。他利用比例的这个性质,就得到M1P1+M2N2+M3P3+…M1N1+M2N2+M3N3+…=ba在卡瓦利里看来,分子的和就是圆面积的四分之一,分母的和就是椭圆面积的四分之一。

因为14圆面积14椭圆面积=圆面积椭圆面积=ba即πb2椭圆面积=ba所以,椭圆面积=πab这就是我们现在求椭圆面积的公式。

卡瓦利里使用不可分量的方法,求出了许多前人不会求的面积,受到了人们的拥护和尊敬。

卡瓦利里还根据不可分量的方法指出,两本书的外形虽然不一样,但是,只要页数相同,薄厚相同,而且每一页的面积也相等,那么,这两本书的体积就应该相等。他认为这个道理,适用于所有的立体,并且用这个道理求出了很多立体的体积。这就是有名的“卡瓦利里原理”。

事实上,最先提出这个原理的,是我国数学家祖日恒。

祖日恒是祖冲之的儿子,生于公元5到6世纪,比卡瓦利里早一千多年,所以我们叫它“祖日恒原理”或者“祖日恒定理”。

荒谬的结果卡瓦利里的《不可分量几何学》一书,也受到了一些人的责难。原因是使用不可分量的方法,可以推出任意两个三角形的面积相等。

他们说,任意作一个两腰不相等的三角形ABC,由顶点A向对边BC引高线AD,AD把△ABC分成大小不等的△ABD和△ADC。显然,△ABD的面积大于△ADC的面积。

用不可分量的方法,把△ABD看成是由无穷多条平行于高AD的线段M1N1,M2N2,M3N3,…组成的,写成式子就是△ABD的面积=M1N1+M2N2+M3N3+…边AB边上的N1,N2,N3,…点,分别引平行于底边CB的直线,交AC边于N1,N2,N3,…再过N1′,N2′,N3′…点,引垂直于BC边的线段N1′M1′,N2′M2′,N3′M3′…由上面的作法得到M1N1=M1′N1′,M2N2=M2′N2′,M3N3=M3′N3′…根据不可分量的方法,△ADC的面积又可以看作是由无穷多条平行线段M1′N1′,M2′N2′,M3′N3′,…组成的,所以有等式△ADC的面积=M1′N1′+M2′N2′+M3′N3′+…=M1N1+M2N2+M3N3+…=△ABD的面积看来不可分量的方法,一定存在着什么漏洞。不然的话,怎么会推出这样荒谬的结果呢?

问题出在哪儿呢?