书城自然科学世界科技与发现历史纵横谈
7853600000007

第7章 数理化工大发现

歌德巴赫猜想

1742年,歌德巴赫发现每个不小于6的偶数都是两个素数(只能被它本身整除的数)之和。如63+3,125+7,等等。

1742年6月7日,歌德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:a任何一个大于等于6之偶数,都可以表示成两个奇质数之和;b任何一个大于等于9之奇数,都可以表示成三个奇质数之和。

这就是歌德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉都不能证明,这引起了许多数学家的注意。至今,许多数学家仍在努力攻克它,但都没有成功。曾经有人做了具体的验证工作,例如:63+3,83+5,105+53+7……有人对33×108以内且大过6之偶数一一进行验算,歌德巴赫猜想a都成立。但严格的数学证明尚待数学家们继续努力。

勾股定理

我国是世界上最早发现勾股定理的国家,但是我们的祖先率先发现这一几何宝藏并非一蹴而就的,而是经历了漫长的岁月,通过长期测量发现的,其间走过了一个由特殊到一般的艰辛过程。

《九章算术》我国的几何起源很早。据考古发现,十万年前的河套人就已在骨器上刻有菱形的花纹;六七千年前的陶器上已有平行线、折线、三角形、长方形、菱形、圆等几何图形。随着生活和生产的需要,越来越多的几何问题摆在我们祖先面前。

四千年前,黄河流域经常洪水泛滥。大禹(公元前21世纪)率众治水,开山修渠,导水东流。在治水过程中,他“左准绳,右规矩”。(这里“规”就是圆规,“矩”就是曲尺,由长短两尺在端部相交成直角合成,短尺叫勾,长尺叫股),运用勾股测量术进行测量。在《周髀算经》中,表明大禹已经知道用长为3:4:5的边构成直角三角形。

到了商高(公元前1120年)所处时代,我国的测量技术及几何水平达到了一定高度。《周髀算经》中,记载着周公与商高的一段对话。商高说:“故折矩以为勾广三,股修四,径隅五。”这里的“勾广”就是勾长,“股修”就是股长,“径隅”就是弦长。就是说,把一根直尺折成矩(直角),如果勾长为3,股长为4,那么尺的两端间的距离,即弦长必定是5.这表明,早在三千年前,我们的祖先就已经知道“勾三股四弦五”这一勾股定理的特例了。

在稍后一点的《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”

从制作工具、测量土地山河到研究天文;从《周髀算经》到《九章算术》,我们的祖先逐渐积累经验,从而发现了勾股定理。为纪念祖先的伟大成就,我国将这个定理命名为勾股定理。

当代中国数学家吴文俊说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的……17世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”

0的发现

零是位值制记数法的产物。很久以前,当人们采用这种记数法遇到空位的时候,就会采用不同的方式来表示它的存在。世界上较早采用位值制记数法的有巴比伦、玛雅、印度和中国等,这些地区和民族都对零的产生和发展作出过自己的贡献。

世界上最早采用十进制记数法的是中国人。“零”这个符号之所以产生的原因,最初其实也并不是为了表示“无”,而是为了弥补十进制值记数法中的缺位。从公元七世纪起,中国开始采取用“空”字来作为零的符号。但是,中国古代的零是圆圈〇,并不是现代常用的扁圆0.现在普遍使用的包括“〇”在内的印度—阿拉伯数码是在13世纪的时候由伊斯兰教徒从西方传入中国的,而那时中国的〇已经使用100年了。

希腊的托勒密是最早采用这种扁圆〇号的人,由于古希腊数字是没有位值制的,因此零并不是十分迫切的需要,然而当时用于角度上的60进位制时,则很明确地以扁圆0号表示空位。可是,托勒密的0并没有作为数参加运算,也没有单独使用的情况。

最先把零作为一个数参加运算的是印度人。

他们在很早的时候就采用了十进位值计数法。空位最开始是用空格表示的,后来为了避免看不清带来的麻烦,就在空格上加一小点,如用5·8表示508.公元876年,在印度的瓜廖尔地方发现了一块石碑,上面的数字和现代的数字很相似,这可能是由小点发展为小圈0表示零的最早根据。

印度人承认零是一个数并用它参加运算可以说是对零的发现的更为重要的贡献。

后来,历经了漫长的岁月,印度数字传入了阿拉伯,并发展成为现今我们所用的印度—阿拉伯数字。但直到1202年,意大利数学家斐波那契把这种数字(包括0)传入欧洲,现代的零的概念和印度—阿拉伯数字中的零号才逐渐流行于全世界。

黄金分割

古希腊的毕达哥拉斯和他的学派在数学上有很多创造,著名的黄金分割就是他在公元前6世纪发现的。

一天,毕达哥拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,便站在那里仔细聆听,似乎这声音中隐匿着什么秘密。他走进作坊,拿出尺子量了一下铁锤和铁砧的尺寸,发现它们之间存在着一种十分和谐的关系。

回到家里,毕达哥拉斯拿出一根线,想将它分为两段。怎样分才最好呢?经过反复比较,他最后确定按照1:0.618的比例截断最优美。

后来,德国的美学家泽辛把这一比例称为黄金分割律。这个规律的意思是,整体与较大部分之比等于较大部分与较小部分之比。无论什么物体、图形,只要它各部分的关系都与这种分割法相符,这类物体、图形就能给人最悦目、最美的印象。

中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称其为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。直到19世纪黄金分割这一名称才逐渐通行。

π的精确历程

在实践中,人们发现用古代流传下来的圆周率为3的标准去计算圆的周长和面积,其值总会比实际小,所以,不断有人尝试去修正和精确圆周率π的具体数值。

古人求π的方法,就是对单位圆作内接(或外切)正多边形,再求算正多边形的面积。显然,当边数越多时,正多边形就越接近于圆,所求得π的近似值就越精确。不过,计算量越来越大,也越来越困难,每次只是增加小数点后精确的位数而已。π究竟等于多少?没有人知道!

古埃及人用来演算π值的草纸公元前250年,阿基米德在求圆弧长度时,提出圆内接多边形和相似圆外切多边形,当边数足够大时,两多边形的周长便一个由上,一个由下地趋近于圆周长。他先用六边形,以后逐次加倍边数,到了九十六边形时,求出了π的估计值介于3.14163和3.14286之间。这是世界上第一次提出圆周率的科学计算方法。到公元前5世纪,希腊已将圆周率精确到3.1416,这在世界上是领先的。

在求π值精确度上,中国人曾一度领先世界,创造辉煌。我国最早对π进行修正是在公元1~5年,汉代王莽时期的刘歆得到的圆周率是3.15466,这个圆周率虽然不够精确,但这确是突破古人限制的一个勇敢尝试。

公元263年,魏晋时期的数学家刘徽在《九章算术注》中,首创用“割圆术”去求圆周率。即通过不断倍增圆内接正多边形的边数来求圆的周长。他从计算正六边形开始,一直算到正192边形,计算出的圆周率在3.141024至3.142704之间。这个精确度虽然只是3.14,但由刘徽开始的“割圆术”以及在此过程中创立的“无限逼近”的思维方法,都让他受到世人的赞誉。

我国南北朝时期的著名数学家祖冲之也对圆周率进行了深入的研究,他将圆周率精确到了小数点后七位,推出3.1415926<π<3.1415927.这个由祖冲之创造的世界级的精确度在当时是非常了不起的一个成就,它保持了一千年之久,直到15世纪才由中亚的阿尔·卡希打破,他得到了精确到小数点后16位的π值。

浮力定律

浮力定律现在又称阿基米德定律,这一定律的发现和一个传说故事有关。有一次,大学者阿基米德在众目睽睽之下光着身子从澡堂里飞奔而出,欢呼雀跃,周围的人都不知究竟发生了什么事使他忘乎所以。

原来,国王命令金银匠做了一顶纯金的王冠。新王冠做得很精巧,国王也很高兴。可是国王并不信任工匠,为了检验工匠是否在黄金中掺进了廉价的金属,国王决定让阿基米德在不损坏王冠的情况下辨别出皇冠的质地。

接到任务,阿基米德好几天都想不出什么好主意,他废寝忘食,近乎痴迷。好心的朋友劝他去洗个澡,放松放松。当他坐到满满一盆水里去时,从盆边溢出去的水引起了他的注意,他脑子里灵光一闪,猛地从澡盆里跳出,来不及穿上衣服就狂奔回家。

阿基米德他在家里做好了试验,来到国王面前,把盛满水的一个大盆放在一只大盘子里,又叫国王拿出一块与皇冠同重的0.75千克的黄金和两只大小一样的杯子。然后,阿基米德将王冠放在盆子里,水溢出来后将溢出的水都装进一只杯子里。然后用同样的方法把0.75千克黄金溢出来的水装进另一只杯子里。最后他拿着两只杯子走到国王面前,说道:“陛下,请您比较一下,这两只杯子里的水一样多吗?”

国王一眼就看到一只多一只少。于是阿基米德肯定地说:“王冠里一定掺了银或者其他的金属,它不是纯金的。”

原来,阿基米德利用了物质的密度、体积和重量的相互关系,同一物质的密度是固定的,即重量与体积之比是一个确定的数。这样,如果王冠是纯金的,它所排出的水应该与0.75千克纯金所排出的水的体积一样,如果不一样,那么王冠里肯定掺了其他金属。

阿基米德辨别王冠的故事仅是一个传说,但他研究物体所受浮力的规律并发现了浮力定律却是千真万确的。他把密度不同的物体放入水中发现:密度和水相同的物体完全浸入水中,但不会沉入水底;密度大于水的物体一直下沉至容器底部;密度小于水的物体总是浮在水面上。阿基米德分别采用了密度不同的物体——木块、蜡块、石块、铁块、铜块、金块等放入水中反复做试验,所得的结果是完全一致的:它们的重量都和所排开的水的重量相等。

阿基米德意识到这是一个普遍规律。于是,他把研究结果写进《论浮力》的著作中。在书中,他明确地表述了浮力定律,并用严密的逻辑推理对浮力定律进行了证明。他指出:浸在液体中的物体受到向上的浮力,浮力的大小等于它所排开液体的重量。这就是著名的浮力定律。为纪念这位伟大的科学家,人们把浮力定律命名为阿基米德定律。

单摆等时性

伽利略是一位虔诚的天主教徒,每周都坚持到教堂做礼拜。1582年的一天,教堂里一个被修理工无意碰到而摆动起来的大吊灯引起了伽利略的注意。他的脑海里突然闪出测量吊灯摆动时间的念头。凭着自己学伽利略的摆钟模型医的经验,伽利略以脉搏计时,同时数着吊灯的摆动次数。

起初,吊灯摆动速度较大,过了一阵子,吊灯摆动的幅度变小了,摆动速度也变慢了,直到停止了摆动。令伽利略惊奇的是每次测量的结果都表明来回摆动一次需要相同的时间。通过这些测量伽利略发现:吊灯来回摆动一次需要的时间与摆动幅度的大小无关,无论摆幅大小如何,来回摆动一次所需时间是相同的。即吊灯的摆动具有等时性,这就是伽利略最初的发现。

伽利略的试验并没有就此结束,回到房间后,他到处寻找试验所需要的东西。他找来丝线、细绳、大小不同的木球、铁球、石块,用细绳的一端系上小球,将另一端系在天花板上。这样,一个单摆就做成了。用这套装置,伽利略继续测量摆的摆动周期。试验证明,无论用铜球、铁球,还是木球,只要摆长不变,单摆来回摆动一次所用时间就相同。这表明单摆的摆动周期与摆球的质量无关。

为了找出决定摆动周期的因素,伽利略继续从试验中寻找答案。多次试验之后,伽利略发现利用不同的摆长,可以十分简便地得到不同的摆动周期。由此可见,摆的长度是影响摆动周期的惟一因素。在实验基础上通过严密的逻辑推理,伽利略证明了单摆周期与摆长的平方根成正比,与重力加速度的平方根成反比。

但让伽利略沮丧的是,他始终无法对自己发现的这一奇妙规律给出一个明确合理的解释。直到100多年后,当牛顿发现地心引力时,这个规律才有了圆满的解释。

但是伽利略很快就发现可以利用摆来制造一台精确的时钟,而这个建议也一直未被采纳。直到1656年第一架摆钟出现以前,人们仍然经常为短时间计时而感到困难,不得不用脉搏或水滴来粗略地计时。

自由落体定律

亚里士多德认为物体自身重量越重,下落的倾向就越大,下落的速度也就越快;物体越轻,下落的倾向就越小,下落的速度也就越慢。因此,亚里士多德得出了一个结论:物体下落的快慢和它的重量是成正比的。

在我们今天看来,亚里士多德的论断是错误的。然而在古代,亚里士多德有很高的声望,他所说的话没有一个人敢怀疑。所以在将近两千年的漫长岁月里,人们一直把亚里士多德的论断当作真理。直至16世纪,这个论断才被伽利略推翻。

比萨斜塔伽利略首先进行了逻辑推理,从推理中发现物体下落的快慢和它的重量无关。伽利略设想,如果亚里士多德的观点是正确的,轻重不同的两个物体下落时,重的物体下落快,轻的物体下落慢。可是,如果将它们绑在一起同时下落会出现什么情形呢?按照亚里士多德的观点,绑在一起后的物体会比原来重的物体更重,所以它们就比重的物体下落得快。可如果从另一个方面分析,重的物体要带动轻的物体运动,它们应该比重的物体下降得慢一些。这两个结论很显然是矛盾的。由此伽利略得出结论:物体下落的快慢与重量无关,所有物体下落的快慢都是相同的。

伽利略又继续研究物体下落的距离和所用时间的关系。可是又遇到了难题,因为在那个时代是没有钟的。为了计算时间,伽利略在一个大的盛水桶底部钻一个小孔,并安上龙头,在龙头下面放上接水容器。打开龙头,水就会流入接水容器,称量容器中所接水的质量就可以确定经历的时间。

物体下落时,运动的速度很快,经历的时间也极短。用这种粗糙的装置测量精确的时间显然是办不到的。伽利略仔细观察小球在斜面上的运动,发现斜面越陡,小球运动得越快。于是伽利略把小球的下落运动看成是小球斜面运动的一种特殊情况。因此伽利略就开始用斜面做实验来研究物体下落的规律。

当斜面的倾斜度很小时,他就能比较准确地计算时间了。伽利略反复进行斜面实验,测量出小球在斜面上运动的距离和所用时间,通过推导距离、时间、速率和加速度之间的关系,得出了小球沿斜面滚下或自由下落的运动都是匀加速运动的结论,又进一步发现了物体下落运动的规律——自由落体定律,即物体从静止状态开始下落,物体运动的距离同下落时间的平方成正比。

大气压

公元17世纪,欧洲的一些矿井里已经使用活塞式抽水机抽出矿井里的积水。按照亚里士多德“自然界厌恶真空”的原理,当抽水机活塞提上来时,水就跟上来赶走活塞下面的真空,抽水时水被提上来的高度应是无限的。但在实践中人们却发现,在超过10米深的井里,抽水机无论如何也不能将水抽上来。人们向著名科学家伽利略请教,伽利略认真思考后说真空是有阻力的,抽水机中水柱的高度正好是这个阻力的量度,但这个结论仅仅停留在猜想的层次。当时,伽利略已经双目失明,无法亲自验证,只好把工作交给他的学生托里拆利来完成。

托里拆利实验示意图伽利略去世不久,托里拆利就开始研究抽水机为什么不能从超过10米深的井里把水抽上来的问题。他相信老师的猜想是正确的。1643年,托里拆利和伽利略的另一个学生维维安尼做了一个实验。他们给长122厘米、一端封闭的玻璃管里充满水银,用手堵住管口将其倒转过来放入水银槽中,松开手后管中水银下降了一段,当水银柱静止时测量它的高度是76厘米。他们把玻璃管向不同方向倾斜,但无论怎样水银柱的高度始终保持76厘米。这时候托里拆利给水银槽上部注满水,然后把玻璃管徐徐提起。当管口一离开水银的时候,管内水银就全部流了出来,然后水进入管内充满了整个管子。托里拆利由此断定,玻璃管中水银柱上端的那段空隙是真正的真空,否则水就不会充满整个管子。

经过进一步分析,托里拆利得出结论:空气压迫水银槽液面是产生这一现象的根源,由于玻璃管上端形成了真空。所以空气的压力就把水银压入玻璃管中,水银柱产生的压力正好等于空气的压力,这个压力就是大气压。通过这些实验,托里拆利不但获得了真空,而且发现了大气压。为了纪念他所作出的这一贡献,后人把托里拆利实验中,水银柱以上的真空空间叫“托里拆利真空”。

大气压的发现不仅促进了流体静力学的研究,而且促使人们研究空气的弹性,发现了气体的实验定律,推动了物理学理论向前发展。

帕斯卡定律

帕斯卡在对托里拆利大气压实验的研究过程中,受其启示产生了新发现。他注意到气体、液体同属流体,于是他从流体的角度看待托里拆利实验,开始研究液体的压强。

法国巴黎卢森堡公园为此,他专门制作了一个适用于测量液体压强的压强计。这个压强计有一根橡皮管,一端接压强计,另一端接扎有橡皮膜的金属盒,把金属盒放入液体中便可以测量液体内部的压强。各种实验证明水越深,压强就越大。更让他惊喜的发现是:在同一深度,水向各个方向的压强相等。帕斯卡又把水换成多种不同液体反复实验,得到的结论完全相同。在实验事实的基础上帕斯卡进一步发现:液体内部的压强由液体的重力产生。压强的大小仅仅由液体的性质和深度决定,与液体重量和体积无关。由此推论:重量和体积较小的液体也能够产生较大的压强。但许多人都对此结论表示怀疑。

因而,在1648年帕斯卡进行了一次公开实验。他将一个木桶装满水用盖子封住,在桶盖上面竖一根细长的管子并把它插入桶中,然后让人站在高处给细管灌水。结果只用了几杯水,木桶就被压裂了。在场的人大为震惊,此后再也没有人怀疑帕斯卡的理论了。

之后,帕斯卡又开始了对液体中的压强传递方式的新探索,他在一个充满水的容器上竖直安装两根粗细不同的圆筒,筒里装上活塞。两个活塞放相同重量的物体时,帕斯卡发现小活塞向下运动,大活塞向上运动。要使活塞静止不动,就必须给大活塞上多放一些物体。帕斯卡反复实验,并且把实验数据作了详细的记录。

帕斯卡在对实验数据进行大量的数学运算后终于发现:当活塞静止时两个活塞上的重量与面积的比值是相等的,这个比值正好等于液体对容器任何一部分单位面积上施加的压力。

1653年,帕斯卡在《论液体平衡》的论文中明确指出:加在密闭容器上的压强,能够大小不变地被液体向各个方向传递。这就是著名的帕斯卡定律。可惜这一重大发现并没有得到及时的运用,这篇论文直到帕斯卡死后才被发表出来,这不得不说是科学界和人类社会的一个遗憾和损失。

光色散

1665年英国正在闹瘟疫,为了减少感染,剑桥大学暂时放假了。牛顿回到了自己的家乡。他虽然也去田里干活,但更多的精力还是用于科学研究。他在上大学的时候,就非常喜欢做物理实验,接触到许多的光学仪器。当时的光学仪器存在许多的缺陷,这些问题却被牛顿牢牢记在了心里。那个时代的光学仪器非常原始,无非是一些平面镜,凹、凸透镜及三棱镜等元件,因而牛顿在家里就能够方便地开展自己的工作。

雨后,天空中美丽的彩虹就是悬浮于

空中的小水滴将太阳光分散了的结果一天,牛顿拿出一块玻璃三棱镜准备做实验,一束阳光射了进来。细心的牛顿发现地面上呈现出红、黄、青、紫等各种颜色的光,而且排成了鲜艳彩带。牛顿以前曾多次使用过三棱镜,都没有发现这个现象。

牛顿开始对这一现象进行认真的研究。他用支架把三棱镜安放好,接着拿出两张硬纸板。在一张纸板上刻出一条缝放在棱镜前面,将另一张放在棱镜后面作光屏。当一束阳光穿过窄缝射到棱镜上时,在进入棱镜的一面发生一次折射,从棱镜的另一面射出时又发生一次折射。经过两次折射后,光线的方向变了,在后面的屏上形成一条由红、橙、黄、绿、蓝、青、紫七种颜色排开的彩色光带。难道白色的阳光是由这七种颜色的光组成的吗?牛顿开始查找资料,很快便发现了对这一现象的解释:白色的光通过三棱镜后之所以变成依次排列的各色光,并不是白光有复杂成分,而是白光与棱镜相互作用的结果。

牛顿开始考虑这个问题的真实性。如果白光通过棱镜后变成七种颜色的光是由于白光与棱镜的相互作用,那么这些颜色的光经过第二个棱镜时必然会再次改变颜色。

他根据自己的想法继续做实验。牛顿先在棱镜后面竖放一张开有小孔的屏,这样转动前面的棱镜,就可以使不同颜色的光单独地穿过小孔。在屏的后面再放一块三棱镜,就能观察到这些单色光通过第二块棱镜后颜色是否会改变。但实验的结果表明,这些单色光经过第二块棱镜后没有再分解,颜色也没有变化,看来别人的解释并不正确。紧接着牛顿又想,既然一块棱镜能把白光分解成七种颜色的光,那么用另一块棱镜就可能使这些彩色的光复原为白光。于是他又在第一块棱镜后倒放了一块顶角较大的棱镜,果然实验成功了,七种颜色的光带又变成白光。

这些成功的实验使牛顿认识到白色的阳光的确具有复杂的成分,它由七种不同颜色的光组成。三棱镜之所以能把它们分开,是因为各种单色光相对于棱镜有不同的折射率。后来这些实验被称为著名的“光的色散实验”。

惯性定律

历史上三位科学家都对惯性定律的发现作出了不可磨灭的贡献。第一位是古希腊最伟大的思想家、哲学家和科学家亚里士多德。他主张从经验出发研究事物,十分重视通过观察总结事物的规律。对于物体运动规律,他从马拉车车就运动,马停止拉车车就不再动的现象出发,总结出物体运动必须有一个力来维持的理论。他的理论在16世纪之前一直占统治地位,直到16世纪末期,意大利物理学家伽利略对此学说发起了挑战。

伽利略的高明之处在于把观察、实验、理性思维和数学结合在一起探讨物理问题,寻找物理学运动规律。为了寻找物体运动的规律,伽利略设计了一个斜面实验。

伽利略将两个光滑斜面相连,然后让球从一个斜面上以一定的高度滚下。他发现,无论如何改变另一斜面的坡度,小球都会不管实际路程的长短,而沿着斜面上升到与下落等高的地方。在此基础上,天才的伽利略对此作出了天才的设想:若第二个斜面是无限延伸而绝无摩擦的水平面,则小球将会永远向前运动。他进一步推理得出结论:物体运动并不需要力来维持。最终,他把这个发现概括为“只要除去使物体加速和减速的外部原因,运动物体必将严格地保持它一旦获得的速度”。

尽管历史上已有许多人对惯性运动作了种种描述或设想,但像伽利略这样经过严格的推理而得出明确的结论还是第一次。伽利略这一发现在惯性定律的建立上取得了突破性的进展,但是,伽利略所指的水平面实际上是以地球为中心的球面,而不是空间的一条直线。这个认识还是不完全的,最终的惯性定律是由牛顿完成和精确的。

1687年,英国伟大的数学家和物理学家伊萨克·牛顿在总结前人工作的基础上,写了名为《自然哲学的数学原理》的光辉著作,建立了经典力学体系。作为经典力学的坚实基础,惯性定律在100年后被继承和完善了,他提出了著名的三大运动定律,促进了近代科学研究的发展。

牛顿三大定律中的第一定律就是惯性定律。牛顿指出物体的质量越大,惯性也越大,质量是物体惯性大小的量度。定律内容表述为:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

万有引力

在科学史上,牛顿对万有引力定律的发现可以说功绩卓越。其他科学家如胡克、哈雷也在这方面作出了非常重要的贡献,但与牛顿相比,他们的观点和研究方法总是存在某些缺陷,最终与跨时代的利学发现失之交臂。

万有引力定律的发现解释了行星围绕太阳运动的原因牛顿于1687年发表了《自然哲学的数学原理》。他所发现的万有引力定律,也在这部著作中得到了系统而深刻的论证。为物理理论中已经确立的定律、新假说、实验观测等,提供了一个极好的范例。

关于万有引力的发现还有一个有趣的传说:一次,牛顿正在花园里小坐。这时,一个苹果从树上掉了下来……虽然这件曾发生过无数次的事再平常不过,但却引起了这位巨人的沉思:究竟什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着,终于,他发现了对人类具有划时代意义的万有引力。

在《自然哲学的数学原理》中,牛顿提出了一个思想实验,设想有一个小星球很靠近地球,以至几乎触及到地球上最高的山顶,那么使它保持轨道运动的向心力当然就等于它在山顶处所受的重力。这时如果小星球突然失去了运动,它就如同山顶处的物体一样以相同的速度下落。如果它所受的向心力并不是重力,那么它就将在这两种力的作用下以更大的速度下落,这是同我们的经验不符合的。可见重物的重力和星球的向心力必然是出于同一个原因。

紧接着,牛顿根据惠更斯的向心力公式和开普勒的三个定律推导了平方反比关系。牛顿还反过来证明了若物体所受的力指向一点而且遵从平方反比关系,则物体轨道呈圆锥曲线——椭圆、抛物线或双曲线。在原理中,牛顿同磁力作用相类比,得出这些指向物体的力应与这些物体的性质和量有关,从而把质量引进了万有引力定律。

牛顿把他在月球方面得到的结果推广到行星的运动上去,并进一步得出所有物体之间万有引力都在起作用的结论。这个引力同相互吸引的物体质量成正比,同它们之间的距离的平方成正比。牛顿根据这个定律建立了天体力学的严密的数学理论,从而把天体的运动纳入到根据地面上的实验得出的力学原理之中,这是人类认识史上的一个重大的飞跃。

雷电的本质

1745年,荷兰莱顿大学的教授马森布洛克和他的朋友库诺伊斯做了一个有趣的实险。他们先用摩擦机产生电,再用金属丝把电引入玻璃瓶内,可以看见闪电的火花。他们一同设想:能不能将电储存起来呢?他们将瓶内灌满水,接通导线,再继续摇动摩擦机,却看不见一个火花。这时库诺伊斯像是要把电捞出来一样,一只手端起瓶子,另一只手到水瓶里去探索,哭然他觉得右臂一阵麻胀,猛然将手缩回来。马森布洛克由此得到启发,将玻璃瓶贴了锡箔制成了能储存电的瓶子,由于马森布洛克是荷兰莱顿人,所以人们将它称为“莱顿瓶”。

富兰克林和他的儿子利用

风筝将雷电引入莱顿瓶中一直从事大气电理论研究的富兰克林听说了这个实验,颇受启发。他将天上经常打死人畜的闪光的雷电与地下的电联想到了一起。两种电到底是不是一回事呢?为自己提出这个课题时,富兰克林已经整整40岁了。

1749年,富兰克林在大量实验的基础上证明了闪电是一种电力性质,闪电和电火花具有同样的特性,都是瞬时的,都是相似的光和声,都能燃着物体、熔解金属、流过导体、具有集中于物体尖端等特点。1752年,他用著名的风筝实验,证实了自己的观点:闪电就是一种放电现象。

7月的一天,终于盼来了费城一个大雷雨的天气,富兰克林带着儿子选了一块广阔的草地,按照设定引“天电”的方案,将一只特制的风筝徐徐放到阴雨密布的天空。

突然,一道闪电劈开云层,在天空划了一个“之”字,接着嘎嘣一声脆雷,那如铜钱般的雨点就瓢洒盆泼般地倾了下来。富兰克林让儿子威廉拉紧风筝线站到草地旁边的一所房子屋檐下,这样,靠近手的一节线就不会因淋湿而导电。这一切都是精心设计好的,风筝是绸子制的,不怕雨淋,线是麻绳很结实,靠乎的一节又换成绸带,不导电,麻绳与绸带间用金属线挂一把铜钥匙。

富兰克林站在屋檐下紧张地注视着西边的天空,只见电光一道道闪过,雷声一声更比一声响亮。期盼的现象终于出现了:麻绳上的细纤维一根一根都直竖起来,这说明风筝线上已有电了。富兰克林小心翼翼地将带来的莱顿瓶接在钥匙上,使莱顿瓶充电。然后,他又使莱顿瓶放电。从而证明了聚集在瓶内的电是来自空中的闪电。瓶里的电也有火花,可以点燃酒精灯,可以用它做各种电气实验。天电、地电果然是一样的!

以后,许多科学家又重复了富兰克林的实验,以确证对闪电的认识。经过长期的研究,科学家们逐步揭示了雷电的本质:云层之间,或云层与地面之间,云与空气之间的电位差增大到一定程度时,就会发生猛烈的放电现象,随之产生震耳欲聋的雷鸣。

红外线

1672年,人们发现太阳光(白光)由各种颜色的光复合而成。当时,牛顿作出了单色光在性质上比白光更简单的著名结论。用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。1800年,英国物理学家赫歇尔从热的观点来研究各色光时,发现了红外线。

具有红外线夜摄功能的摄像机能够在全黑环境下进行拍摄,甚至可以将肉眼也无法分辨的物体清晰地拍摄下来赫歇尔的职业是牧师,但却对太阳光独有钟情。为此,他专门买了一块很大的玻璃三棱镜放在自己的桌子上,不时欣赏太阳光透过它形成的七色彩带。

1800年的一天早晨,年过花甲的赫歇尔看着美丽的七色彩带,脑海里突然闪现了一个好奇的念头:“阳光带有热,可是组成太阳光的七种单色光中,哪一种带的热最多呢?”这一看似简单的问题在当时谁也不知道,于是,赫歇尔便开始思考这个问题,试图找出正确的答案。

经过冥思苦想,几天以后,赫歇尔便找到了解决这一问题的方法。他在自己房中的墙上贴上一张白纸作为光屏,使经过三棱镜的七色光带照在纸屏上。然后,在每一条光带的位置桂一支温度计。他怕自己的观察不够全面,又在红光带和紫光带外各挂了一支温度计。

做好这一切之后,赫歇尔记录下每支温度计开始的读数,然后就在一旁观察。温度计的水银挂缓慢地上升。大约过了半个小时,所有温度计的读数不再变了。赫歇尔发现绿光区的温度上升了3℃,紫光区的温度上升了2℃,紫光区外的那支温度计读数几乎没有变化。然而令他吃惊的是,红光区外的那支温度计的读数竟上升了7℃。

多次的实验结果都是相同的:红光区外的那支温度计的读数上升最多。经过详细的分析之后,赫歇尔认为阳光的光谱实际上比人们看到的七种单色光更宽,在红光带外一定还有某种人眼看不见的光线,而且这种光线携带的热量最多。

得到准确结论后,赫歇尔对外宣布:大阳发出的光线中除可见光外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外测,因而叫作红外线。

红外线一经发现,很快应用到了军事、工业、科研等领域。近50年来,医学领域也开始应用这一技术。如在诊断中,红外热象仪能有效地诊断肿瘤、血管疾病等。

理论分析和实验研究表明,不仅太阳光中有红外线,而且任何温度高与绝对零度的物体(如人体等)都在不停地辐射红外线。就是冰和雪,因为它们的温度也远远高于绝对零度,所以也在不断地辐射红外线。因此,红外线的最大特点是普遍存在于自然界中。也就是说,任何“热”的物体虽然不发光,但都能辐射红外线。因此,红外线又称为热辐射线简称热辐射。

电流磁效应

电流,特别是电池的发现,不仅激发了人们研究电现象与化学现象、磁现象之间联系的兴趣,也为发现这种联系提供了可能性。

1802年,意大利的法律学家兼哲学家罗曼尼斯曾做过伏打电堆联结成的电路对磁针的影响的实验,并且看到了磁针的微小转动,但是他误认为这是电堆的两极对磁针的作用,没有想到是电流的作用。因为当时流传的看法是:电堆的两极与磁石的两极有类似性质。从主观方面来看,寻找电与磁的内在联系正是奥斯特从事科学研究的长远目标。

1812年,奥斯特作了这方面的探索。他从导线通电后发热的现象出发,进一步推测如果逐渐缩小导线的直径,将会出现光和磁的效果。结果,他只看到了光的效果而未获得磁的效果,失败说明此路是不通的。

1819年冬,奥斯特在哥本哈根为一些科学工作者讲授电磁学方面的问题,当时他也正在研究电流对磁针是否有作用的课题,但一直没有什么成效。

奥斯特的电磁实验1820年4月的一天,丹麦物理学家奥斯特要作一次电学方面的演讲,听众是一些物理爱好者和精通物理知识的学者。演讲之前,奥斯特一直在思考电和磁之间的联系,他打算试一下电流对磁针的作用。但是,在实验准备就绪之后,却发生了一件意外事故,使得他在演讲之前未能进行实验。

带着准备就绪的实验设备,奥斯特走进了演讲大厅。他边讲边做演示实验,深入浅出地给听众讲解电磁学知识。这次演讲精彩极了,一次接一次地赢得大家热烈的掌声。演讲临近尾声,奥斯特顺手将一枚小磁针放在了一根导线的下方,磁针的指向正好与导线的方向平行。当给导线通电的时候,他看到磁针发生了转动。

磁针转动的角度很小,根本没有引起听众的注意。可是奥斯特对这个现象却十分重视,他敏锐地意识到,这也许是他一直探索的电和磁的联系。

初次的发现使奥斯特非常激动。演讲一结束,他立刻回到实验室研究这个现象。

在此后的3个月时间里,奥斯特做了60多个这方面的实验,用无可辩驳的事实证明了电和磁之间存在的联系:电流可以产生磁场。

奥斯特的发现具有重大的科学价值和历史意义,他不仅揭露出电与磁之间的内在联系,还发现一种新的自然力——旋转力。同时,为电的应用开辟了一个新的领域。

欧姆定律

从18世纪末到19世纪初,在科学领域最领先的是法国。而德国的物理学家们片面强调定性的实验,忽视理论概括的作用,他们对于法国人数学物理方法甚为不满。

当然,德国也在发生变化。1806年,拿破仑大军挫败了普俄联军,给了德国以巨大打击。一些改革者提出以法国科学为榜样,彻底发行德国科学体制。德国教育有了较快发展,大学引进法国科学经典著作为教本,开办讨论班和研究生班,进入了以往认为的科学禁区。欧姆正是在这种环境中开始电路实验的理论研究,发现欧姆定律的。

欧姆设计的实验装置1822年,法国数学家傅立叶将导热规律总结为“傅立叶定律”。其内容是:通过等温面的导热速率与温度梯度及传热面积成正比。

1826年,欧姆从傅立叶定律受到启发,认为电流现象与热传导类似。导热杆中两点之间的温度差相当于导线中两端之间的驱电力;导热杆中的热流相当于导线中的电流。欧姆猜想,如果导热杆中两点之间的热流强度正比于这两点的温度差,导线中两点之间电流也许应正比于这两点之间的某种驱电力。他把这种驱电力称为电动力,即今天的电势差。

开始,欧姆使用伏打电堆作电源,但它容易极化,电动势很不稳定,给实验研究工作带来很大困难。1821年,塞贝克发明温差电池。欧姆接受波根道夫的建议采用了温差电池。但他还面临着另一个电流强度的测量问题。开始,欧姆曾设想用电流的热效应,通过热胀冷缩的方法测量电流强度,但很难获得精确的测量结果。

后来,他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,设计了电流扭秤:用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置;再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,他发现磁针的偏转角与导线中的电流成正比。他将实验结果于1826年发表。

1827年,欧姆在原来的基础上又作了数学处理和理论加工,在定义电流强度和电势差等概念的基础上,欧姆得到一个更加完满的公式:S=r·E,其中S表示导线的电流强度,r为电导率,E为导线两端的电势差。该公式发表在《用数学推导伽伐尼电路》一文中。欧姆的这部著作,是19世纪德国的第一部数学物理论著。

安培定律

1820年9月11日,法国科学院召开会议,主题是由物理学家阿拉果报告奥斯特关于电流能够产生磁场的新发现。演示实验让大家目睹了电流作用磁针的现象。法国科学家们受到极大震动,他们一向认为电和磁没有联系的观念在事实面前被击得粉碎。

安培计安培是一位易于接受科学事实的科学家,他在讨论过程中提出既然电流能够像磁石一样吸引小磁针,那么由此可以推断,导线中的电流也能够相互作用。这一见解引起了与会的毕奥和阿拉果的极大兴趣。会议结束后,他们一起找到安培,约好在科学院大门口见面。

安培刚到科学院门口不久,脑海中浮现出两条平行导线中电流的作用问题。正想得入神,略微抬头,突然发现前边有一块黑板,于是从口袋掏出一支粉笔在黑板上计算起来。这一切被等在科学院门口的毕奥和阿拉果看在眼里。他们远远看见,安培正在用一支粉笔在一辆马车的后车身上写着,马车在不停地走着,安培跟在后面不停地写着。当他们跑到跟前时,已看见车身上写得密密麻麻,此时,马车走得越来越快,安培就跟着跑了起来。后来,马车一转弯就不见了,这时安培才发现,原来那是一辆马车的后车身。安培懊丧地站在路中央,看着马车带着他那块“黑板”载着他那密密麻麻的计算公式,渐渐地消失了。

科学院会议结束之后,奥斯特的新发现不停地在安培的脑海里盘旋,他已经完全被这个新发现迷住了。于是,他一头扎进实验室没日没夜地忙活起来了。在实验室,安培用不同的电源和导线反复进行实验。有时候,他把导线折成方框后通上电流,有时又把导线对折再通电流,有时候,他还把导线做成螺旋形或圆形通以电流。

在大量实验事实的基础上,安培通过精心研究,在不到一个月的时间里,就向科学院提交了三篇有关的研究论文,报告了他一生中最伟大的发现:不仅电流对磁针有作用,而且两个电流之间也有相互作用。在两根平行的通电导体中,如果电流的方向相同,它们就互相吸引;电流的方向相反,它们就互相排斥。

沿着这个研究道路,安培继续探索,在后来的研究中又取得了大量成果。1822年,他发现了电流之间相互作用的规律——安培定律。同时,确定了判断电流磁场方向的安培定则和判断磁场对电流作用力方向的左手定则。

电磁感应

1820年,丹麦科学家奥斯特发现通电导线能引起旁边的磁针转动。当时正从事电和磁研究的法拉第根据自己做的大量实验以及大胆的直觉立刻联想到:既然电流能产生磁,那么为什么磁不能产生电流呢?1822年,他在笔记本中写下了一个崭新的研究课题——“把磁转变成电”。

为了实现这一科学闪念,法拉第付出了10年的辛勤劳动。最初,他试图用强磁铁靠近闭合导线或用强电流使邻近的闭合导线中产生稳定的电流,但都一次次地失败了。

关于法拉第电磁感应实验原理的草图假如根据奥斯特的看法,被推动的电荷对磁铁产生作用,也就说“产生磁”,那么被推动的磁铁也应该产生电。他按照自己的设想设计了实验装置,他的装置类似于我们今天的变压器:在一边接上一个伏打电池(法拉第称为A)和一个中断电流的开关;在另一边(称为B)接上一个电流显示器(即当有电流时,显示出偏转的一个磁针)。接通A的电流时,B电路上的测量仪显示短暂的偏转,然后,指针立即又回到0位。当A路中的电流被中断时,也出现一偏转(但向另一个方向偏转)。法拉第本来希望,在整个电流动过程中,在A和B电路中都有电流产生,然而磁针则准确无误地表明:只在“开”和“关”的时刻有效应存在。后来,法拉第很快发现,永久磁铁也可以用于感应。

1931年10月17日这天,法拉第终于实现了重大的突破。他在直径为1.9厘米、长为21.6厘米的空心纸筒上绕了8层螺旋线,把8层线圈并联后再接到检流计上。当他把磁铁棒迅速地插入螺线管时,检流计的指针就偏转了,然后又迅速地拉出来,指针在相反的方向上发生了偏转。每次把磁棒插入或拉出时,这效应会重复,因而电的波动只是当磁铁靠近时才产生。这就是一个原始的发电机,它通过磁体的机械运动而产生电流。

此后,法拉第又继续进行大量的实验,以探讨电磁感应产生的条件。1831年11月24日法拉第写了一篇论文,他把可以产生感应电流的情况概括成五类,正确地指出了感应电流与源电流的变化有关,而不与源电流本身有关。法拉第将这一现象与导体上的感应电作了类比,把它命名为“电磁感应”。1832年,法拉第采用了笛卡儿发明的磁力线这个概念来解释“电磁感应”现象。他认为:感应电流是导体切割磁力线产生的,电流方向由切割磁力线的方向决定。这就是我们今天还常用到的“左/右手定律”。

能量转换和守恒定律

在能量转换和守恒定律发现的过程中,最值得一提的有三位科学家,他们分别是:迈尔、焦耳和亥姆霍兹。

德国医生迈尔最早是从人体新陈代谢的研究中得到这个重要发现的。1840年,26岁的迈尔在一艘船上做随船医生,当他给生病的船员抽血时,发现病人的静脉血比在欧洲时颜色要红一些,他想可能是由于血中含氧量较高的缘故。而含氧量之所以高,是机体中食物的燃烧过程减弱的结果。这使他联想到食物中化学能与热能的等效性。1842年,迈尔发表了题为《论无机界的力》的论文,提出了建立不同的力之间的当量关系的必要性。

焦耳为测量能量的转

换而设计的实验仪器迈尔从理论上揭示了能量转换和守恒定律,而英国物理学家焦耳对于热功当量的精确测定为这一定律的建立提供了最重要的实验基础。1840~1841年间,经过多次通电导体产生热量的实验,他发现电能可以转换为热能。1843年,焦耳钻研并测定了热能和机械功之间的当量关系,并宣布:自然界的能是不能毁灭的,哪里消耗了机械能,总能得到相当的热,热只是能的一种形式。此后不断改进实验方法,直到1878年还有测量结果的报告,那时测得热功当量的平均值仅比现在人们公认的4.18焦耳佧约小0.7%,如此精确的实验结果为能量守恒定律的确立,提供了无可置疑的实验证据。

亥姆霍兹是德国物理学家、生理学家,他是从生理学问题开始对能量守恒原理进行研究的。1847年,亥姆霍兹出版了《论力的守恒》一书。在书中,亥姆霍兹确认“力”的守恒定律在自然界中所起的作用,给出了不同形式的能的数学表示式,并研究了它们之间相互转换的情况。《论力的守恒》这部著作成了能量守恒定律论证方面影响较大的一篇历史性文献。

除了上述三位物理学家作出主要贡献外,还有法国的卡诺、塞甘、伊伦,德国的莫尔、霍耳兹曼,俄籍的瑞士化学家赫斯,英国的格罗夫,丹麦的柯耳丁等人,都曾独立地发表过有关能量守恒方面的论文,对能量守恒定律的发现作出了贡献。

阴极射线

阴极射线和X射线、放射性、电子都有关联,它们是由不同时期众多科学家各自研究发现的。

19世纪中叶,随着电学知识的积累和真空技术的提高,科学家们又开始注意被遗忘很久的真空放电现象。

1838年,法拉第首先做了低气压气体的放电实验。他将一根玻璃管内的空气抽去,将两根黄铜棒插到玻璃管里面作为电极。当通电的时候,法拉第发现,在两根黄铜分开的瞬间,出现了一种独特的放电现象:从负极发出一束光线,而正极却是暗的。加大两极之间的距离,则从正极向负极发出一束紫红色的光。距离越大,光束越长,且向负极移动,光束和负极之间总有一段暗区,而且长度几乎不变。这个暗区后来被称为法拉第暗区。

普吕克尔普吕克尔对法拉第观察到的这一现象进行了进一步研究。普吕克尔是波恩大学的物理学教授,他对磁与气体放电间的关系产生了极大的兴趣。在他的身边有一位极有才华的仪器制造者盖斯勒,这对他的工作很有帮助。

盖斯勒精于玻璃吹制,他制作了许多形状不同、性能优越的真空管供普吕克尔研究使用,这就是后来称为的“盖斯勒管”。1855年,他根据普吕克尔的设计,利用托里拆利的真空原理制造出水银真空泵,使人们获得了更高的真空度,低气压气体放电的研究也随之进入真空放电的研究阶段。可以说,盖斯勒不是一位科学家,但他对阴极射线的发现作出过重要贡献。

1857年,普吕克尔用盖斯勒管做了一系列真空放电实验。他发现管内的气压越低,法拉第暗区越大。如果把磁铁靠近盖斯勒管,则从阴极发出的光束就会跟随磁场的“力线”。最重要的是普吕克尔还发现,从阴极发出的射线打到管壁上会发出荧光,而且荧光斑能被磁场力偏转。

普吕克尔的学生希托夫也长时间从事真空放电的研究。1869年,他发现如果在阴极和玻璃管壁之间放置各种形状的物体,那么物体的影子就会清晰地映照在管壁上。根据一系列实验,希托夫推测从阴极发出的是一种沿直线传播的射线。

德国物理学家哥尔德茨坦进一步证实了阴极射线是直线运动。从1871年起,哥尔德茨坦用多种材料制成形状、大小不同的平面阴极,发现由阴极发出的射线完全不同于白炽灯丝发出的光那样向四面八方散射,而是从阴极表面平行射出,并且这种发射方式与阴极的材料无关。他还发现了阴极射线的其他性能,比如把某些材料,如银盐放到管内,射线就会使它们发生化学变化。哥尔德茨坦把这种射线称为“阴极射线”。

电磁场理论

法拉第从广泛的实验研究中构想出描绘电磁作用的力线图像。他认为电荷和磁极周围充满了力线,靠力线(包括电力线和磁力线)将电荷(或磁极)联系在一起。

詹姆斯·克拉克·麦克斯韦在法拉第力线思想激励下,1842年和1847年,麦克斯韦连续发表了两篇关于电磁相似性的论文,文中把法拉第的力线思想转变为定量表述,初步形成了电磁作用的统一理论。

麦克斯韦在大学期间就深深被法拉第的电磁思想所吸引,他认识到力线概念的重要性,也看到法拉第定性表述方面的弱点,决心以数学手段弥补其不足。同时,汤姆生的论文使他体验到法拉第的思想与传统的静电理论是协调均,有可能进一步建立统一的电磁理论。

1856年2月,麦克斯韦的第一篇电磁学论文《论法拉第力线》不仅用数学形式解释了法拉第的力线图像,而且包藏着他后来一切新思想乃至麦克斯韦方程的胚胎。

法拉第已经证明了磁能生电。电流和电场并不一样,电流很明显地能使导线发热,能电解水,叫传导电流。而变化的电场虽然也有电流的某些性质,却并不明显,聪明的麦克斯韦就给它起了一个名字叫“位移电流”。

变化电场能否像电流一样激发出磁场呢?法拉第实验了多少年还是没有找到它们之间的联系。到了最关键的时候,问题往往不是用实验所能解决的,而只能靠推理来决定。这个难题果然由麦克斯韦用数学公式推导出来了。

1865年,统一的电磁场理论终于诞生了。麦克斯韦发表了一组描述电磁场运动规律的方程,他证明变化的磁场可以产生电场,变化的电场又可产生磁场。法拉第的预言得到了最完美的阐述和严密的数学论证,而且更妙的是麦克斯韦用自己的方程居然推出了电磁波的速度正好等于光速,这又证明了光也是一种电磁波。光学和电磁学在这里融合了。

电磁波

由法拉第发现、麦克斯韦完成的电磁理论,因为未经一系列的科学实验证明,始终处于预想阶段。是赫兹把天才的预想变成世人公认的真理,使假说变成了现实。

促使赫兹去验证麦克斯韦预言的正确性是一次偶然的发现引起的。他在做一次放电实验时,发现在附近的线圈上迸发出小火花。赫兹马上联想到,这是电谐振的结果,就像声学实验中,相同的音又会产生共振一样。赫兹受到启发,由此开始了捕捉电磁波的系统实验。

赫兹捕捉电磁波所用的实验仪器1886年,赫兹在恩师赫尔姆霍茨的指导和帮助下,制成了一套完备的实验仪器。他将两个用空气隔开的金属小球调到一定的位置,接上高压交流电,使电荷交替地涌入,由于两球之间的电压很高,间隙中的电场很强,空气分子被电离,从而形成一个导电通路。通电时,两个本来不相连的小球间却发出吱吱的响声,并有蓝色的电火花一闪一闪地跳过,这说明小球间产生了电场,那么按照麦克斯韦的方程,电场再激发磁场,磁场再激发电场,连续扩散开去,便有电磁波传递。为了能接收到电磁波,赫兹又在离金属球4米远的地方用一根导线弯成环形,线的两端之间有一个空气隙,做成了一个能探测电磁波的检波线圈。当火花发生器通电后,检波器的空气隙里果然出现了蓝光闪闪的小火花。可见火花发生器的电流能产生辐射,它的能量能跨越空间,从发生器送到接收器。这就说明发射球和接收环之间有电磁波在运动了。

赫兹后来又通过反复实验证明了电磁波具有光一样的反射性能。此后,他还悉心研究了电磁波的折射、干涉、偏振和衍射等现象,并且算出了速度为每秒30万千米,麦克斯韦于24年前所作的预言完全得到了证实!

尽管当时赫兹还无法解释这种现象,但他如实作了记录,并在当年发表的题为《论紫外光对放电现象的效应》中首次描述了这一发现。

电子

人类发现电子的过程是相当漫长的。早在1833年,在法拉第提出的电解定律中,就曾得出结论:电是以独立粒子的形式存在的。40年之后,科学家才对电流通过盐酸溶液时观察到的电解过程进行深入的分析。1874年,爱尔兰物理学家斯托尼继第一个由电解定律推出:原子所带的电量为一个基本电荷的整数倍。1891年他进一步提出用电子作为电的最小单位。

汤姆逊检流计汤姆逊发现电子的工作开始于研究阴极射线的本性。阴极射线发现后,一些科学家认为阴极射线是带电粒子流,而另一些则说它是和光一样的电磁波,双方争执不下。

而汤姆逊则认为如果阴极射线是一种带电的粒子流,它经过电场和磁场时的运动方向就会改变,否则阴极射线便无疑是和光一样的电磁波。汤姆逊先是在一个15米长的真空管内,用旋转镜法测量阴极射线在低气压中的传播速度,得到的值为1.9×10米/秒,这个值远远低于光速。因此汤姆逊认为不能把阴极射线看作电磁波。

否定了阴极射线是电磁波,也不能说阴极射线是粒子流,汤姆逊接着进行阴极射线在电场和磁场中运动的实验。他对法国物理学家佩兰测定阴极射线电荷的实验做了重大的改进,在接收筒内他收集到了负电荷。他还发现阴极射线与负电荷流在磁场和电场的作用力下有着相同的运动路径。因此,汤姆逊断定阴极射线是由带负电荷的粒子流组成。

汤姆逊为了弄清楚这些带负电荷的粒子是什么,他巧妙地测出阴极射线粒子的电荷与质量的比值——荷质比。他用各种不同的金属材料做成阴极射线管的阴极,并给管内填充不同的气体,但测出的荷质比值始终不变。这个结果引起了汤姆逊的兴趣。

汤姆逊把阴极射线粒子的荷质比与电解定律求出的氢离子的荷质比进行比较,发现后者尚不到前者的千分之一。这个发现太重要了,因为如果阴极射线粒子的电荷与氢离子相同,那么阴极射线粒子的质量就远小于氢离子。由于氢离子已是当时知道的最轻的粒子,如果是这样,阴极射线粒子就是一种从未见过的新粒子。怎么测出阴极射线粒子的电荷呢?汤姆逊想到他的另一位学生汤森德已测出一个气体离子的电荷值,他对这个实验略加改进,就测出阴极射线粒子的电荷量,这个值与氢离子的电荷值相等。

由此,汤姆逊得出了结论:阴极射线是一种粒子流,质量比氢离子小得多;这种粒子带有最小单位的电荷,但却是负的。所有的证据都证明这是一种人类从未知道的新粒子。借助斯托尼继的对电荷最小单位的命名,汤姆逊称阴极射线粒子为“电子”。

X射线

1895年11月8日傍晚,伦琴正在维尔茨堡大学的一个实验室做一项关于阴极射线的实验。他用黑纸将阴极射线管完全掩遮好,使之与外界相隔绝,然后把窗帘放下。当他打开高压电源,检查有没有光线从管中漏出的时候,突然发现有一道绿光从附近的一个板凳射出。他把高压电源关掉,光线也随着消失。板凳是不会发出光的,敏感的伦琴立刻点灯,发现板凳上摆着自己原来做实验时用的一块硬纸板,硬纸板上涂了一层荧光材料。

医疗中运用X射线进行身体检查伦琴知道从阴极射线管中散出的阴极射线有效射程仅有2.5厘米,显然是不会跑出这么远的。那这是什么光使荧光材料闪光的呢!伦琴很快意识到有某种未知光线被发现了,并且这种光线能穿过黑纸包层,激发涂料的晶体发出荧光。伦琴惊喜万分!他再次打开开关,用一本书挡在阴极射线管与硬纸板之间,发现硬纸板依然有光。他先后在阴极射线管与硬纸板之间放了木头、玻璃、硬橡胶等等,但都不能挡住这种光线。

伦琴在实验室里整整做了7个星期的实验,终于确定这是一种尚不为人类所知的新射线。由于对它的性质还不十分了解,所以定名为X射线。后来,科学界为了纪念它的发现者,将之称为“伦琴射线”。

1895年12月下旬,伦琴将他的研究成果写成论文。在随后的一次检验铅对X射线的吸收能力时,他意外地看到了自己拿铅片的手的骨骼轮廓。于是,伦琴请他的夫人把手放在用黑纸包严的照相底片上,用X射线照射,底片显影后,看到了伦琴夫人的手骨像,手指上的结婚戒指也非常清晰,这成了一张有历史意义的照片。

1896年元旦,伦琴将他的论文和第一批X射线照片复制件分送给一些著名物理学家。几天之后,这个发现就传遍了全世界,在公众中引起轰动。其传播之迅速,反应之强烈,在科学史上是罕见的。X射线很快就被应用于医学和金属探伤等领域,从而创立了X射线学。X射线究竟是一种电磁波,还是一种粒子流,曾经争论许多年。直到1912年德国物理学家劳厄和他的助手发现X射线通过晶体后产生衍射现象,才证明它是一种波长很短的电磁波。

X射线的发现具有十分重大的意义,它是19世纪末20世纪初发生的物理学革命的开端。它的发现对于化学的发展也有重要意义:1913年,根据对各种元素的特征X射线光谱的研究,发现了莫斯莱定律,确定了元素的原子序数等于核电荷数,这对元素周期律的发展和原子结构理论的建立起了重要作用。以X射线晶体衍射现象为基础建立起来的X射线晶体学,是现代结构化学的基石之一。

放射性

提起放射性,人们自然想到居里夫妇。其实,最早的发现者是法国一个名叫贝克勒尔的人。贝克勒尔25岁就取得了工程师资格,到1892年时,44岁的贝克勒尔对物理学已经有很深的研究了。1月20日,法国科学院举行了一次重要学术讨论会。作学术报告的是著名的数学家和物理学家彭加勒。他给来自全国各地的与会者展示了伦琴刚刚寄给他的X射线照片,引起学者们的极大兴趣。

在场的贝克勒尔给彭加勒提了一个问题。他说,射线是从阴极射线管的哪一个区域发出的?彭加勒说,X射线看来是从管子正对着阴极的区域发出的,就是玻璃管发出荧光的区域。贝克勒尔受到启发,当即产生了这样的猜测:X射线和荧光之间可能存在着某种联系,能够发出荧光的物质可能同时也可发出X射线。

例会结束后,贝克勒尔就开始了实验,他精心设计了一套研究方案:把照相底片用黑色的厚纸包严,使其不受阳光的作用,但可以受到X射线的作用,因为伦琴已经证明X射线可以穿过厚纸包层使照相底片感光。在照相底片包封附近放两块能发出荧光的材料,其中一块用一枚银币与纸封隔离,然后把它们拿到阳光下暴晒,使材料发出荧光。如果发荧光的物体可以产生X射线,那么底片上将留下明显不同的感光痕迹。贝克勒尔家中收藏有大量可以发出荧光和磷光的物质材料,他把它们分别拿出暴晒,进行实验。最初的实验得到的结果是否定的,照相底片没有感光,发荧光和磷光的物质并不同时发射X射线。后来,他重新选择氧化铀作为主攻对象,这次他发现照相底片感光了。1896年2月24日,他向法国科学院报告了这一发现,认为X射线与荧光有关。

尽管贝克勒尔已经找到了他所猜测的X射线与磷光物质之间的关系,但是他并没有中止实验。2月26日,当他进一步做实验时,凑巧碰上了连绵的阴雨,他只好把实验的东西原封不动地锁进抽屉。5天后,天放晴了,贝克勒尔继续中断的试验。一向严谨细心的他取出底片时,想预先检查一下实验品,没想到意外情况发生了:在没有阳光的情况下,底片不仅曝光而且上面又有很明显的铀盐的像。这说明铀本身在发光!第二天,又是科学院举行例会的时间,贝克勒尔在科学院的学术报告上公布了这一新发现。天然放射性的发现,标志着原子核物理学的开始。

此后,贝克勒尔一直继续他的研究工作,但是他只是着迷于铀,更确切地说是局限于铀,由于他认为发出辐射是铀的一种特殊性质,没有认识到这种性质的普遍性,在对铀做了全面的实验研究后,贝克勒尔对这种新的射线的兴趣逐渐减小了。尽管他的研究没有能够进一步深入下去,但是贝克勒尔所做的工作已经使人类的认识向微观领域又深入了一个层次,已经开拓了新的研究领域。科学界为了表彰他的杰出贡献,将放射性物质的射线定名为“贝克勒尔射线”。

镭钋

贝克勒尔虽然发现了放射性,开拓了新的研究领域,但他没能意识到这项发现的深远意义。他只是写了报告,记录了实验过程及结果,没有去深究原因——这些射线究竟是什么,它从哪里来?一切到此为止。然而科学是永无止境的,贝克勒尔开创的新事业并没有真正停滞,将它引向深入的是一对科学史上著名的夫妇科学家——居里夫妇。

玛丽·居里1896年,居里夫人为获得博士学位,审慎地选择着研究课题。贝克勒尔的一篇报告引起了她的关注。贝克勒尔称,铀和钠的化合物具有一种特殊的本领,能自动、连续地放出一种眼睛看不见的射线。居里夫人感觉这是一个非常难得的研究题目。次年,她正式确定了自己的研究方向。

铀射线的研究工作开始后,居里夫人细心地测试各种不同的化合物。在测量中,出现了一个十分意外的情况:在对铀和钍的混合物进行测量时,她观察到有些铀和钍的混合物的放射性辐射强度比其中铀和钍的含量所应发射的强度高出很多。经过反复考虑,她认为,这种反常现象只有一种合理的解释:就是那些矿石中必定含有少量还没有被发现的化学元素,同时这种元素是具有放射性的。皮埃尔·居里对这一大胆的设想表示赞同,同时,他也意识到这一研究的重要性,他毅然放下自己的研究课题,和居里夫人一起投入到寻找这种新元素的艰巨的化学分析工作中。

居里夫妇用分离沥青铀矿的方法来寻找新元素,结果发现含已知元素铋和钡部分的放射性特别强。1898年7月,他们从含铋的部分中确认了一种新的放射性元素。为纪念玛丽的祖国波兰,这种新的放射性元素被命名为钋。到1898年年底,他们又从含钡的部分确认了另外一种新的元素,它是迄今为止他们所发现的放射性最强的未知元素。他们把它命名为镭,在拉丁文里为“放射”的意思。

将钋从铋中提纯出来要比把镭从钡中提纯出来麻烦得多,而且镭的放射性比钋要强,居里夫妇决定先从提纯镭开始。沥青铀矿中镭含量极其稀少,许多吨的矿石,需要经过混和、溶解、加热、过滤、蒸馏、结晶等一系列的工作,才可能分离出一克的极小份数和镭盐。为了提取纯镭,测定镭原子的原子量,向科学界证明镭的存在,他们夜以续日地努力工作。到1902年,通过45个月艰苦繁重的劳动,在数万次的提炼后,他们从数吨沥青铀矿渣中提炼出了0.1克纯净的氯化镭,在光谱分析中,它清楚地显示出镭的特有的谱线,与已知的任何元素的谱线都不相同。居里夫人还第一次测出它的原子量是225,其放射性比铀强200多万倍,这一科学的举措证实了镭元素的存在。

能量子假说

热辐射是19世纪发展起来的一门新学科,它的研究得到了热力学和光谱学的支持,因此发展得很快。

1859年,柏林大学教授基尔霍夫根据实验的启发,提出了黑体辐射的概念。所谓黑体是指一种能够完全吸收投射在它上面的辐射而全无反射和透射的、看上去全黑的理想物体。他认为用黑体来研究热辐射是一种非常理想的实验模型。这一观念为热辐射的深入研究提供了一条理想的思路,为了得出与实验相符合的黑体定律,许多科学家尝试了各种不同的方法。

1895年,德国物理学家维恩从理论分析得出,可以用加热的空腔代替涂黑的铂片来代表黑体,实验表明这样的黑体所发射的辐射能量密度只与它的温度和频率有关,而与它的形状及组成物质无关。这一做法使得热辐射的实验研究又大大地推进了一步。1896年,维恩根据热力学的普遍原理和一些特殊的假设提出一个黑体辐射能量按频率分布的公式,后来人们称它为维恩辐射定律。

同一时期,柏林大学的理论物理学家普朗克也加入了热辐射研究的行列。他用热力学方法研究黑体辐射理论。1899年,他得到了一个和维恩辐射定律一致的关系式。随着实验的深入,普朗克发现维恩及他自己得出的辐射定律并不完全正确,公式在短波部分与实验中观察到的结果较为符合,但在长波部分就明显与实验不符了。

正当普朗克尝试修改辐射公式时,1900年6月,英国物理学家瑞利发表论文批评维恩在推导辐射公式时引入了不可靠的假定。他把统计物理学的能量均分定理用于一个以太振动模型,导出了新的公式,即瑞利公式。这个公式在长波部分与观察一致,而短波部分则与实验大相径庭。

为了在黑体辐射的维恩公式和瑞利公式之间寻求协调统一,普朗克决定从理论上推导出一个普遍化公式的定律。受两个公式的启发,他采用内插的方法,很快就把代表短波方向的维恩公式和代表长波方向的瑞利公式综合到了一起,这也就是普朗克辐射定律。

10月19日,他在德国物理学会的会议上以《论维恩辐射定律的改进》为题报告了自己的结果,他指出:电磁振荡只能以量子的形式发生,并且量子的能量和频率之间存在一个确定的关系,它是一个自然的基本常数。作为理论物理学家,普朗克并不满足于找到一个经验公式,他要进一步探求这个公式的理论基础。

为了从理论上推导这一新定律,普朗克又连续紧张地工作了两三个月,在1900年底时,他提出一个大胆的、革命性的假设:每个带电线性谐振子发射和吸收能量是不连续的,这些能量值只能是某个最小能量元e的整数倍,而每个能量元和振子频率成正比。由这一假设,普朗克推出了著名的黑体辐射公式。后来人们称e为能量子,称h为普朗克常数。12月24日,普朗克在德国物理学会上以《论正常光谱能量分布定律的理论》为题报告了自己的结果。

光的波粒二象性

光学是一门古老的科学,关于光的本性问题也一直是许多科学家所努力探寻的。

17世纪70年代还由此引发了一场著名的争论。牛顿在剑桥对光学进行了为期3年的研究,最终形成了自己的学说,坚信光是一种粒子。站在他对立面的是英国皇家学会会员胡克和惠更斯。胡克认为光本质上是一种依靠以太媒质的振动而传播的波。他认为,只有把光看成波,才能完美地解释光的直线传播特性。

爱因斯坦对于光的特性,惠更斯比胡克研究的还要深入。他认为光的波动既类似于水波,又类似于声波。光波是一种球面波,光在传播时形成一个个球面波向前传递。胡克和惠更斯用来批驳粒子说的共同武器是光的衍射现象。衍射被公认为是波的一种特性,当光的衍射现象被发现之后,光的波动性也顺理成章地得到了承认。

对于波动说提出的种种反对粒子说的例证,牛顿用粒子说进行了反驳。对于光的衍射现象,牛顿作了不同的解释,他认为:光的衍射现象的发生是因为光中的微粒经过物体边缘时受到物体引力,因而表现为光在物体边缘产生了弯曲,更能证明光是一种微粒。

关于光的本性的争论一直持续了很多年。最终,由于牛顿的微粒说能更好地解释光的各种现象,因而它得到了公认。至此,备受科学界关注的光的本性之争以牛顿粒子说的胜利而告一段落。这一学说在他去世之后一直占据了近100年的统治地位。直到1801年,由于微粒说无法解释托马斯·杨的实验,波动说又重新占了上风。

20世纪初期,与牛顿同样伟大的另一位科学家爱因斯坦,受到1900年普朗克提出的量子概念的启发,将其推广到空间中的传播情况,提出了光的量子理论,证明了牛顿学说中光的粒子的存在,为牛顿的理论提供了有力的支持。爱因斯坦还综合了光的粒子说与波动说,辩证地提出光具有波动性与粒子性,即光既是一种波,同时也是一种粒子。

1905年3月,爱因斯坦在德国《物理年报》上发表了题为《关于光的产生和转化的一个推测性观点》的论文。他认为对于时间平均值,光表现为波动;对于时间瞬间值,光表现为粒子性。这是历史上第一次揭示微观客体波动性和粒子性的统一,即波粒二象性。这一科学理论最终得到了学术界的广泛接受。

超导

低温世界是一个魔术般的世界,把一束鲜花放在液态氮中一浸,拿出来向地上一摔,鲜花就会像玻璃一样破碎:把一只橡皮球放在液态氮里一浸后拿出,能像铃铛一样敲响;水银在低温下冻得比铁还硬,可以用锤子把它钉在墙上;在液氮中冻硬的面包,在漆黑的房间里竟能发出天蓝色的光辉……昂纳斯领导的实验室就是这样一个美丽的童话世界,同时,它也是世界上最冷的地方。虽然莱顿城里鲜花常开,但是实验室里制造出来的低温,比南极或北极的最低温度(-88℃)还要低几倍。

超导演示实验当时,科学家已经能把除了氦气以外的气体全部都变为液态。利用液态氢,已获得-253℃的低温,昂纳斯决心获得更低的温度。但是,要使氦气变成液态,困难还很大。例如在液体氦的温度下,连空气都会变成固体,如果不小心与空气接触,空气便会立刻在液体氦的表面上结成一层坚硬的盖子。不过,昂纳斯是不会被这点困难吓倒的。

低温实验室并不是一个拥有良好环境的地方,实验室里充满了管道,还有隆隆作响的真空泵。因为低温不是一下子就能获得的。必须沿着温度的台阶一步一步向下走,温度越低就越困难。昂纳斯先用液化氯甲烷达到-90℃,用乙烯达到-145℃,用氧气达到-183℃,用氢气达到-253℃。终于在1908年成功地实现了最后一种永久气体——氦气的液化,得到了-269℃的低温。在这以后,他用液氦抽真空的方法,得到-272℃。

这个温度属于超低温,当时世界上只有莱顿大学的低温实验室可以得到这样的低温。昂纳斯和他的同伴在这得天独厚的条件下进行极低温度下的各种现象的研究。他们发现水银、铅、锡一般降温到该物质的特性转变点以下时,电阻会突然消失,变成超导电性物体。这就是说,在一个超导线圈中一旦产生了电流就会周而复始地流下去。因为电阻已经消失,电流不会在流动中衰减。昂纳斯把一个铅制的线圈放在液体氦中,铅圈旁放一块磁铁,突然把磁铁撤走,根据法拉第的电磁感应,铅圈内便产生了感应电流。果然,在低温的条件下,电流不断地沿着铅圈转起来,就像一匹不知疲倦的马一样。

1911年,从莱顿大学低温实验室里终于传出惊人的消息:水银在-269℃的条件下,它的电阻消失了!这种现象物理学称为超导现象。1913年,昂纳斯因为这项重大的发现获诺贝尔奖。

原子核

在19世纪末,物理学上爆出了震惊科学界的“三大发现”:1895年,德国物理学家伦琴发现了X射线,同一年,法国物理学家贝克勒尔发现了天然放射性;1897年,英国物理学家汤姆逊发现了电子。这些伟大发现激励了卢瑟福,使他决心对原子结构进行深入研究。

1906年,卢瑟福开始研究原子内部结构。他认为,要了解原子内部的情形,最好的办法是把它砸开。他们选择α粒子的核作为砸开原子的子弹。射击α粒子的枪是极少量的镭。镭是放射性元素,它连续不断地放射出α粒子。镭放在一个仅开一个小口的铅容器里面,让α粒子射出。

卢瑟福的实验仪器,通过它做轰击原子的实验后,卢瑟福发现了原子核1909至1911年间,卢瑟福和他的合作者们做了用α粒子轰击金箔的实验,然而实验却得到了出乎意料的结果。绝大多α粒子穿过金箔后仍沿原来的方向前进,少数粒子却发生了较大的偏转,并且有极少数粒子偏转角超过了90°α有的甚至被弹回,偏转角几乎达到180°。这种现象叫作α粒子的散射。实验中产生的α粒子大角度散射现象,使卢瑟福感到惊奇。因为这需要有很强的相互作用力,除非原子的大部分质量和电荷集中到一个很小的核上,否则大角度的散射是不可能的。

在反复实验研究的基础上,卢瑟福于1911年公布了他的原子模型构想:原子里有一个很重的中心,叫作核。离核很远,绕着核飞快旋转的是电子,每一个电子都在一种确定的轨道上运行着。卢瑟福拿原子的结构跟太阳系比。他说,原子核是原子的中心,正像太阳是太阳系的中心一样。电子隔着很远的距离沿轨道绕着中心旋转,正像行星隔着很远的距离沿着轨道绕着太阳旋转一样。

经过进一步的实验,卢瑟福提出了一个更完整的原子模型:原子的中央是由很重的带正电的质子构成的核,原子重量几乎都集中在原子核上,远离这个核的是很轻的带负电的电子。在此基础上,卢瑟福提出原子的有核结构。1919年,卢瑟福在用α粒子轰击氮原子核的实验的时候,确定了质子的存在。

1932年,英国物理学家查德威克在研究玻特和贝克尔发现的穿透力很强的射线中确定了中子的存在。这样原子核是由质子和中子构成则被人们所公认,并且不同类的原子核内质子数是不同的;每一个质子带一个电位的正电荷,中子不带电。从此,原子核结构的序幕被拉开了。

中子

1920年,英国物理学家卢瑟福曾在著名的贝克尔演讲中作出“原子核内可能存在着质量与质子质量相同的中性粒子”的理论预言。为了检验卢瑟福的假说,卡文迪什实验室从1921年就开始了实验探索工作。

接手这项工作的正是查德威克。1923年,他得到卢瑟福的赞同,用游离室和点计数器作为检测手段,尝试在大质量的氢化材料中检测γ辐射的发射。在初步作了这些尝试之后,查德威克考虑到中子只有在强电场中形成的可能性,但没有合适的变压器可用。正当查德威克着手进一步开展探讨中子的研究时,柏林的玻特和巴黎的约里奥·居里夫妇相继发表了他们的实验结果。

从1928年起,德国物理学家玻特和他的学生贝克尔就开始用钋发射的α粒子轰击一系列轻元素,发现α粒子轰击铍时,会使铍发射穿透能力极强的中性射线,强度比其他元素所得要大过十倍。用铅吸收屏研究其吸收率,证明这种中性辐射比γ射线还要硬。1930年,他们率先发表了这一结果,并断定这种贯穿辐射是一种特殊的γ射线。

同时,在巴黎居里实验室,法国物理学家约里奥·居里夫妇也正进行着类似的实验。1932年1月,他们重复了玻特和贝克尔的实验,对这种射线进行了研究。他们在铍板和测量仪器之间放置各种物质。结果发现,把石蜡板插入后,仪器所记录到的效应要比插入前强得多;而且记录到的是质子。没有石蜡板时,是不带电的射线。这表明石蜡在这种铍射线照射下,会发射出大量质子。他们肯定了石蜡发出的是质子流,遗憾的是,他们没有摆脱玻特的错误解释,也把铍辐射看成是γ射线。1月18日,他们发表了相关实验结果和评论。由于他们对理论的轻视,使他们白白失去了一次发现中子的机会。

约里奥·居里夫妇的实验结果引起了查德威克的注意,但他并不同意居里夫妇的解释。在铍辐射的研究中,查德威克用这种射线先后辐射轻、重不同的几种元素,结果发现射线的性质与通常的γ射线有所不同。当这种射线轰击氢原子和氮原子时,打出了一些氢核和氮核。由此,他断定这种射线不可能是γ射线。因为通常的γ射线照射到物质上时,物质密度越大,对γ射线吸收得越厉害,而这种射线性质刚好相反,密度越小的物质越容易吸收它。

当查德威克用这种射线轰击氢原子核时,发现它被反弹回来,说明这种射线是具有一定质量的中性粒子流。通过对反冲核的动量测定的结果,再利用动量守恒定律进行估算,确定出这种射线中性粒子的质量几乎与质子的相同。查德威克这时才意识到原来玻特和贝克尔最先观察到的这种辐射应当就是卢瑟福所提出的质子与电子的复合体。他沿用了美国化学家哈金斯的中子这个名称作为对这种粒子的正式命名,并在1932年的《自然》杂志上发表了《中子可能存在》的论文。

激光

激光是神奇的,但它不是普罗米修斯从天上偷来的圣火。激光是人造的,但它不是常人随心所欲可以制造出来的。激光的发现以及到最后被广泛运用,是众多科学家付出艰辛努力的结果。

1958年,美国物理学家查尔斯·汤斯和他的同事肖洛在《物理评论》杂志上发表了他们关于《受激辐射的光放大》的重要论文,文中称:物质在受到与其分子固有振荡频率相同的能量激励时,都会产生不发散的强光——激光。这一理论奠定了激光发展的基础。这项研究成果发表后,汤斯和肖洛并没有继续进行研究和实验,这项研究成果最终被美国加利福尼亚州休斯航空公司实验室里一个名不见经传的年轻研究员——西奥多·梅曼利用了。

激光扫描识码器汤斯曾预言,微波激射器的原理,在一定的条件下可以产生激光。梅曼决心亲自实践这一预言。他花了两年时间从事这方面的研究,还动手制作有关的装置,选择各种工作物质。他终于选定了红宝石晶体(在刚玉中掺入铬离子)作为工作物质。

这样的选择在当时是一个颇为大胆的尝试,因为当时的理论界对红宝石晶体发光的可能性是持否定态度的。但是梅曼坚定了自己的选择。他通过实验测量了红宝石晶体的量子效率,分析了红宝石晶体达到能级粒子数反转的条件。他将红宝石晶体材料做成一个直径1厘米、高2厘米的圆柱体,将两端仔细磨成平行的平面,并镀上了银,构成谐振腔。他把它嵌入一个螺旋型的脉冲闪光灯内,使红宝石晶体接上了泵浦源。这样,他完成了世界上第一台即将产生激光的——被他称为“受激辐射光放大器”的装置。这个装置就是世界上出现的第一台激光器。

奇迹终于出现了,1960年5月的一天,梅曼和往常一样来到实验室。他打开了泵浦源的开关,让脉冲氙灯的电能馈入红宝石中,此时,这台装置中发射出了第一束闪光。这束光,色单纯,所有的波都在同一个方向上;发射到几千千米以外也不会因发散而失去作用;聚焦到某一点上可以达到极大的能量,甚至可以超过太阳表面的温度值。这束光,就是人类有史以来所获得的第一束最特殊的光——激光!

梅曼平静地写下了实验记录:红色,波长694.3纳米。1960年5月15日,梅曼宣布了这个记录。这一束在试验室第一次制得的人造激光,虽然仅持续了3亿分之一秒的对间,但它却标志着人类文明史上一个新时刻的来临。

金刚石

印度是世界上最早发现金刚石的国家。大约在2000年前,位于今印度安得拉邦的戈尔康达王国,在克里希纳河、彭纳河及其支流的砾石层中,曾大规模地开采过金刚石。大约在1700多年前,古印度的全刚石曾随着佛教徒传入中国,金刚石这中文名称,就是在那时形成的。一直到18世纪中叶以前,在近2000年的漫长时间里,印度的戈尔康达是世界上金刚石的主要产地。可是,印度的金刚石数量有限,产量很低。当世界上其他金刚石产地被开发时,它就几乎不再为人所知了。

现代采矿作业17世纪末巴西在米纳斯吉拉斯州首次发现了金刚石,随后又在皮奥伊州找到了含有金刚石的沙砾层。由于它的产量比印度大得多,因而迅速取代了印度而成为当时世界上的主要金刚石产地。巴西占据产地宝座不到200年就让位给了南非。

南非金刚石的发现是从一个小女孩开始的。在奥兰治河畔霍普敦附近荒凉的河滩上,一个女孩子从沙砾丛中拣到了一块亮晶晶的小石子。这块小石子就成为孩子们的玩物。1867年,这块晶莹又闪着异彩的石子,吸引了一个来此访友的农民的注意。他找人进行鉴别,发现竟是一块金刚石。但这被认为是一个偶然事件。

第二年在瓦尔河两岸又发现了一些金刚石。1869年3月,一颗价值25000英镑的大金刚石被发现,引起了轰动。然而最初的开采只不过是一些人带着家人或助手,来到河滩上,用铲子、木桶和筛子等简单工具进行筛选。在1870至1871年,南非陆续发现了好几个富含金刚石的地方。这样,南非就变成了世界的主要金刚石产地。

除了南非,世界上又陆续发现了一些金刚石产地,诸如扎伊尔、原苏联、澳大利亚等等。由于科学的日新月异,现代地质找矿理论的巨大指导作用以及各种先进仪器的巨大威力,使人类发现了越来越多的金刚石矿藏。

17世纪时,盛行着炼金术,据说只要找到一种聪明人的石头——哲人石,便可以点石成金,让普通的铅、铁变成贵重的黄金。炼全术家仿佛疯子一般,采用稀奇古怪的器皿和物质,在幽暗的小屋里,口中念着咒语,在炉火里炼,在大缸中搅,朝思暮想寻觅点石成金的哲人石。

当时,德国汉堡有一个想发财的商人名叫布兰德,千方百计地寻找生财之道。当他偶尔听人说,从人的尿液里可以制造出黄金或是能够点石成金的宝贝时,就决心尝试一番。于是,他偷偷地收集了大量的尿液,一点一点的慢慢蒸干后,又胡乱的加上各种各样的东西,今天用煮的办法,明天又用烧烤的办法,一次一次地干下去。

18世纪绘制的从炼金房发现磷的著名油画真是无巧不成书,到了1699年,布兰德在经过几十次的改变配方、更换方法后,居然在一次将尿渣、沙子和木炭放在米中加热,尔后用水冷却产生的蒸汽时,得到了一种在黑夜中能发出荧光的物质。这就是他初次得到的磷,一小块白色柔软的白磷(磷的一种单质)。

在化学史上,这属于十分巧合的事,并且相当罕见。尽管磷可以形成各种各样的化合物,遍布于人及动物体内,但要用磷的化合物来制取单质,都需要经过复杂的化学反应。工业生产上,经常是用磷矿石为原料,加上石英和焦炭,再经过1500℃的高温,而产生的磷蒸汽,在隔绝空气的状态下,冷疑到凉水中,才会成为固体的白磷。

尿液可以制造出黄金,这压根就是一种荒谬的说法。其实,当时的人们谁也不知道人和动物的尿液里到底含有什么东西。如今我们知道,尿液的成分,除了绝大部分水之外,主要的是尿素。此外还有一些新陈代谢的废物,其中便含有极少量的硫、磷等元素,而且是以极其复杂的有机化合物的形式存在的,只有在经过长时间的发酵蒸发后,才能变成磷酸盐。同时,由于饮食情况的不同,排泄物中所含磷的量也有所不同。

布兰德虽然没有得到黄金,却意外地制出了奇怪发光的宝物,他同样惊喜若狂。发光是磷和空气慢慢化合的结果,当然,这在一个世纪以后才被弄清楚,但这种发光现象却使磷的发现蒙上了一种魅力和神秘感。由于分离出来的物质像蜡一样既白又柔软,它在黑暗中能放出闪烁的亮光。根据这些特征,布兰德将它称为Phosphorus,这个词来自Phos(意为光)和phorus(意为生产、诞生),在希腊语中,意思就是“晨星”。晨星是光的“产婆”,因为在它出现后不久,大阳就要升起了。在早晨,金星比太阳早到达东方地平线,因而在大阳升起之前,它已闪烁在东方的天空,它就是“晨星”,也叫“冷光”(即白磷)。

为了发财,对于加工制造方法十分保密。因此,当他得到磷的消息在外界传开以后,人们只知道他是用尿做的实验,别的一无所知。于是,在当时炼金术盛行的年代里,有很多人也抱着想碰运气的念头做了起来。1687年,德国人孔柯尔居然也从尿渣中制出了磷,其做法跟布兰德的方法如出一辙。

氮气

氮的发现其实不是一个人的成就。早在1771~1772年间,瑞典化学家舍勒就根据自己的实验,认识到空气是由两种彼此不同的成分组成的,即支持燃烧的“火空气”和不支持燃烧的“无效的空气”。

1772年英国科学家卡文迪许也曾分离出氮气,他把它称为“窒息的空气”。同年,英国科学家普利斯特里也得到了一种既不支持燃烧,也不能维持生命的气体,他称它为“被燃素饱和了的空气”,意思是说,因为它吸足了燃素,所以失去了支持燃烧的能力。

氮储藏室但是,无论是舍勒,还是卡文迪许和普利斯特里,都没有及时公布发现氮的结论。因此,化学文献中大都认为氮在欧洲首先是由英国化学家丹尼尔·卢瑟福发现的。

1775年,英国著名的化学家布拉克在一个钟罩内,故进燃烧着的木炭,而燃烧一阵子后,木炭就熄灭了。布拉克认为木炭在钟罩内燃烧可以生成“固定空气”(即二氧化碳气)。当布拉克用氢氧化钾溶液吸收了二氧化碳气后,钟罩内仍有一定剩余气体留下来。这种神秘的气体到底有何性质,他无法回答。为了寻求答案布拉克要求他的得意门生卢瑟福继续研究这个问题。

17年后,卢瑟福用动物重做这个实验。当他把老鼠放入密闭钟罩内时,老鼠会被闷死。老鼠闷死后,罩内气体的体积缩小了十分之一。若将密闭器皿内的气体用碱液去吸收,发现气体的体积又继续失去十分之一。可是一个奇怪的现象吸引了卢瑟福,在这老鼠也无法生活的气体里,居然可以点燃蜡烛,你可见到烛光隐现而当烛光熄灭以后,如果往密闭容器内投入磷少许,磷又可继续燃烧……

卢瑟福的实验使他明确了这样两个问题:一是人们很难从空气中把氧气全部除净。二是这种剩余的气体既不助燃,也无助于呼吸。它不能维持动物的生命,并具有灭火作用。这种气体在水和氢氧化钾溶液中也不溶解。卢瑟福把这种气体称为“油气”或“毒气”。很遗憾,由于燃素学说的影响,卢瑟福犯了一个极大的错误。他不承认“油气”是空气的一种成分。因此,尽管他发现了氮气的存在,但却无法摆脱传统观念的束缚,对气体的性质做科学的阐释,在距离真理只有一步远的地方卢瑟福停了下来。

法国科学家拉瓦锡摆脱了传统错误理论“燃素说”的束缚,以实验为根据,作了科学的分析和判断,并指出燃烧其实是物质跟空气里的氧气发生了反应。

1777年,拉瓦锡将组成空气的两种气体的混合物分列命名,一种是能助燃,有助于呼吸的气体——氧;另一种是不助燃、不能维持生命的气体——氮。

燃烧理论

近代以来,关于燃烧现象的本质众说纷纭,自17世纪来至18世纪中期,在欧洲比较流行的是德国化学家施塔尔提出的燃素说。

燃素说解释燃烧现象时,认为一切与燃烧有关的化学变化都可以归结为物体吸收燃素和释放燃素的过程,它虽然解释了某些燃烧现象,但是仍然是一种有严重错误和重大困难的理论。其主要错误是把灰说成是单质,却又把金属说成化合物,并把金属的燃烧过程说成是分解反应。而它最大的困难是,如果确有燃素这种物质存在,它就应具有重量,然而,金属经煅烧释放燃素后重量非但没有减少,反而增加。

铝的燃烧直到18世纪下半叶,燃烧问题依然是深奥难解的。法国化学家拉瓦锡决心找到一种更为科学和合理的方法来解释它。他全身心地投入燃烧现象的研究之中,拉瓦锡收集了著名科学家海尔蒙特、波义耳、斯塔尔等人对这一问题的研究成果,夜以继日揣摩、思考。

经过两个多月的不懈努力,他发现燃烧金属增重的原因是,金属吸收了空气。于是他将这一段的研究结果密封起来,放入科学院的保险柜中,因为他在没有实验证明时,不愿意让别人看到他的结论。接着,他在三四年的时间里,连续进行无数次燃烧和气体方面的实验……

他用金属锡、铅和水银做实验,再用非金属硫磺、磷做买验,还用有机物做实验,逐渐把注意力集中在空气中有哪些助燃气体能够与钨结合使其增重上,并开始了深入细致的研究。

1774年10月,受英国著名化学家普里斯特利的实验研究的启示,拉瓦锡又重复了普利斯特里的加热实验,认识到汞灰分解出来的是氧气。于是,他又用制得的气体逆向重新和汞作用,结果又生成了汞灰。拉瓦锡恍然大悟,原来燃烧就是可燃物质与氧气结合生成氧化物的过程。

1777年9月5日,拉瓦锡向法国科学院提交了划时代的《燃烧概论》,系统地阐述了燃烧的氧化学说,将燃素说倒立的化学正立过来。这本书后来被翻译成多国语言,逐渐扫清了燃素说的影响。科学的氧化燃烧理论的提出和建立,实践了一场深刻的化学革命,确立了科学的近代化学。

氢气

在18世纪末以前,曾经有不少人做过制取氢气的实验,所以实际上很难说是谁发现了氢,即使公认对氢的发现和研究有过很大贡献的英国科学家卡文迪许也认为氢的发现不只是他的功劳。早在16世纪,瑞士著名医生帕拉塞斯就描述过铁屑与酸接触时有一种气体产生;17世纪时,比利时著名的医疗化学派学者海尔蒙特曾偶然接触过这种气体,但没有把它离析、收集起来。尽管波义耳偶然收集过这种气体,但并未进行研究。他们只知道它可燃,此外就很少了解。1700年,法国药剂师勒梅里在巴黎科学院的《报告》上也提到过它。

氢弹爆炸可以产生

非常大的威力最早把氢气收集起来,并对它的性质仔细加以研究的是卡文迪什。因此,在化学元素发现史上氢气的发现者目前公认的是卡文迪许。

1766年,卡文迪许用铁、锌等与稀硫酸、稀盐酸作用制得一种被他命名为“易燃空气”的气体(实际就是氢气),他用普利斯特里发明的排水集气法把它收集起来,进行研究。他发现这种气体与空气混合后点燃会发生爆炸,与氧气化合后会生成水。不仅如此,卡文迪许还发现该气体不溶于水和碱液,与各种不同类型的酸作用时,所产生的量都是固定的,酸的种类、浓度都影响不了它。这样特殊的性质与其他已知气体都不相同,以此推论这该是一种新的元素。

但是由于卡文迪许是一个虔诚的燃素说信徒,按照他的理解:这种气体燃烧起来这么猛烈,一定富含燃素;硫磺燃烧后成为硫酸,那么硫酸中是没有燃素的;而按照燃素说金属也是含燃素的。所以他错误地认为这种气体是从金属中分解出来的,而不是来自酸中。

由于氢气的密度很小,卡文迪许曾一度把它当成梦寐以求的燃素。这种推测很快就得以当时的一些杰出化学家舍勒、基尔万等的赞同。其他许多燃素论者也因此而欢欣鼓舞。由于充满氢气的气球在空气中会徐徐上升,这种现象在当时曾被一些燃素学说的信奉者们当成他们论证燃素具有负重量的重要根据。但好景不长,科学态度严谨的卡文迪许通过一系列的实验终于弄清了空气浮力问题,而且证明了氢气是有重量的,只是密度比空气小得多而已,不能作为燃素存在的证明。

1782年,法国化学家拉瓦锡在建立正确的燃烧理论的基础上,用红热的枪筒分解了水蒸气,他明确地提出:水不是元素而是氢和氧的化合物。这个正确的结论纠正了2000多年来把水当作元素的错误概念。此后的1787年,他把过去称作“易燃空气”的这种气体命名为“(Hydrogne”(氢),意思是“产生水的”,并确认它是一种元素。

分子原子学说

物质是由原子构成的这一猜想,对18世纪以前的人们来说并不陌生,但是真正把这一猜想从推测转变为科学概念的,是英国道尔顿。

道尔顿一直从事原子问题的研究,资料、实验、思考累计了他关于原子论的要点,1803年9月他提出了相关的著名论断:①原子是组成化学元素的、非常微小的、不可以再分割的物质微粒。在化学反应中原子保持其本来的性质。②同一种元素的所有原子的质量以及其他性质是完全相同的,不同元素的原子具有不同的质量以及其他性质,原子的质量是每一种元素的原子的最根本特征。③有简单数值比的元素的原子结合时,其原子之间就发生化学反应而生成化合物,化合物的原子称为复杂原子。④一种元素的原子与另一种元素的原子化合时,它们之间构成简单的数值比。

同年10月21日,道尔顿报告了他的化学原子论,并且宣读了他的第二篇论文《第一张关于物体的最小质点的相对重量表》。他的理论引起了科学界的广泛重视。

1804年以后,道尔顿又对甲烷和乙烯的化学成分进行分析实验,在这个过程中,他发现了倍比定律:相同的两种元素生成两种或两种以上的化合物时,若其中一种元素的质量不变,另一种元素在化合物中的相对重量成简单的整数比。道尔顿认为倍比定律既可看作原子论的一个推论,又可看作是对原子论的一个证明。1807年,汤姆逊在《化学体系》一书中详细的介绍了道尔顿的原子论。

第二年道尔顿的主要化学著作《化学哲学的新体系》正式出版,书中详细记载了道尔顿的原子论的主要实验和主要理论,自此道尔顿的原子论才正式问世。道尔顿的原子学说具备了雄厚的科学依据,但是新的实验事实面前又出现了新的矛盾,它最大的缺点就是必须根据人们事先已知某种化合物的存在,来决定其化合物的分子式。

1811年,意大利科学家阿伏伽德罗在原子学说中引进分子概念。他认为,构成气体的粒子不是原子,而是分子。单质的分子由同种原子构成;化合物的分子由几种不同的原子构成。阿伏伽德罗的假设基本上克服了道尔顿原子学说的缺点。可以说,如果没有阿伏伽德罗的补充,那么道尔顿的原子分子学说是不能被真正确立的。

经阿伏伽德罗来补充的这个原子分子学说比以前的原子学说又有了很大进展。过去,在原子和宏观物质之间没有任何过渡,要从原子推论各种物质的性质是很困难的。现在,在物质结构中发现了分子、原子这样不同的层次。因而我们可以认为,人们对于物质是怎样构成的问题,认识已经接近物质的本来面貌了。

在第戎附近的诺曼底海岸有许多浅滩,海生植物受到海浪和潮水的冲击,会漂浮到浅滩上。在退潮的时候,经营硝石工厂的库特瓦经常到那里采集黑角菜、昆布和其他藻类植物。这些采集物经晒干后烧成灰,再用水浸渍就得到一种溶液,这种溶液经蒸发后可先后结晶出氯化钠、氯化钾和硫酸钾,其中氯化钾可用来生产硝石。

缺碘引起的甲状腺肿大一次,库特瓦在处理硫酸钾的母液时,加入了浓硫酸,不料,容器上方竟然产生了紫色的蒸气,犹如美丽的云彩冉冉上升。最后这种使人窒息的蒸气竟然充满了实验室,当蒸气在冷的物体上凝结时,它并不变成液体,而是成为一种暗黑色的带有金属光泽的结晶。这一现象使库特瓦惊喜不已,他对这种结晶体进一步研究,发现这种新物质不易跟氧或碳发生反应,但能与氢和磷化合,也能与锌直接化合。尤为奇特的这种物质不能为高温分解。库特瓦根据这一事实推想,它可能是一种新的元素。

由于库特瓦的实验设备简陋,药物缺乏,加之他还要把主要精力放在经营硝石工业上,所以他无法证实这种新物质是新元素。最后他只好请法国化学家德索尔姆和克莱芒继续这一研究,并同意他们自由地向科学界宣布这种新元素的发现经过。

经过深入的研究,1813年,德索尔姆和克莱芒发表了题为《库特瓦先生从一种碱金属盐中发现新物质》的报告。他们在研究报告中写道:“从海藻灰所得的溶液中含有一种特别奇异的东西,它很容易提取,方法是将硫酸倾入溶液中,放进曲颈瓶内加热,并用导管将曲颈瓶的口与采集器连接。溶液中析出一种黑色有光泽的粉末,加热后,紫色蒸气冉冉上升,蒸气凝结在导管和球形器内,结成片状晶体。”他们相信这种结晶是一种与氯类似的新元素,为了进一步达到确定的答案,他们又向化学权威戴维、盖·吕萨克、安培等人作了报告。戴维用直流电将碳丝烧成红热,使它与这种结晶接触,并不能把它分解,证明它是一种元素。1814年,这一元素被定名为碘,在希腊文中是紫色的意义。

在发现溴的前几年,德国著名的有机化学家李比希曾与这个发现失之交臂。他在为一家制盐工厂考察母液中所含的物质时,发现淀粉碘化物过夜以后会变成黄色,再将母液通入氯气进行蒸馏,会得到一种黄色的液体。没有分析研究,他就判断是氯化碘,并把装液体的瓶子贴上氯化碘的标签。这是一个轻率导致的失误。这种黄色物质并不走氯化碘正是溴。

1842年,巴拉尔在研究盐湖中植物的时候,将从大西洋和地中海沿岸采集到的黑角菜燃烧成灰,然后用浸泡的方法得到一种灰黑色的浸取液。他往浸取液中加入氯水和淀粉,溶液即分为两层:下层显蓝色,这是由于淀粉与溶液中的碘生成了化合物;上层显棕黄色,这是一种以前没有见过的现象。经过研究,巴拉尔认为可能有两种情况:一是氯与溶液中的碘形成新的氯化碘,这种化合物使溶液呈棕黄色;二是氯把溶液中的新元素置换出来了,因而使上层溶液呈棕黄色。

溴除了少量存在于盐湖与地下水之外,绝大部分存在于海洋之中。据计算,每吨海水中含溴65克,而整个地球上的溴元素储量大约达到了100亿万吨,这真是个惊人的数字于是巴拉尔想了些办法,试图把新的化合物分开,但都没有成功。巴拉尔分析这可能不是氯化碘,而是一种与氯、碘相似的新元素。他用乙醚将棕黄色的物质提出,再加苛性钾,则棕黄色褪掉,加热蒸发至干,剩下的物质像氯化钾一样。然后把剩下的物质与硫酸、二氧化锰共同加热,则产生红棕色的有恶臭的气体,冷凝为棕黄色液体。巴拉尔判断,这是与氯和碘相似的一种新元素。

巴拉尔将自己的新发现报告给了法国科学院。1826年8月14日,科学院派出化学家孚克劳、泰纳和盖·吕萨克共同审查他的新发现。他们一致认为溴的发现在化学上是一种重要的收获,但并不赞成巴拉尔对这种新元素的命名,他们将其改称为溴,含义是恶臭。

1825年,德国海德堡大学学生罗威(1803~1890)把家乡克罗次纳的一种矿泉水通入氯气,产生一种红棕色的物质。这种物质用乙醚提出,再将乙醚蒸发,得到了红棕色的液溴。所以,他也是独立发现溴的化学家。

单质氟

在莫瓦桑之前,包括像戴维、安培、尼克雷、弗雷米等一些知名的化学家都为制取单质氟做出过努力,但最终都没有取得成功,很多化学家甚至还因此而搭上了性命。

氟利昂曾经是家用冰箱的主要制冷剂1872年,莫瓦桑当上当时研究氟化物的化学家弗雷米教授的学生后,就接过了这一化学界的难题。他先花了好几个星期的时间查阅科学文献,研究了几乎全部有关氟及其化合物的著作。经过长时间的探索和一连串的实验,他否定了当时已知的一些方法,根据氟活泼的化学性质,他得出了这样的结论:之所以自己的实验屡屡失败,症结在于都是在高温下进行的。莫瓦桑认为,反应应该在室温或冷却的条件下进行。电解因此成了惟一可行的方法了。

莫瓦桑打算制备剧毒的氟化砷来电解,但是,新的困难出现了,原来氟化砷是不导电的。在这种情况下,他只好往氟化砷里加入少量的氟化钾。这种混合物的导电性能好,可是在反应开始几分钟后,阴极表面覆盖了一层电解析出的砷,于是电流中断了。不仅如此,实验中,莫瓦桑还感到呼吸困难,他面色发黄,眼睛周围出现了黑圈,这是砷中毒的迹象。这套方案只得放弃了。可是,实验却从未中断。

莫瓦桑设计在低温下电解氟化氢。由于干燥的氟化氢不导电,于是往里面加入少量的氟化钾。他把这个混合物放在一支U形的铂管中,然后通电流。在阴极上很快就出现了氢气泡,但阳极上却没有分解出气体。电解持续近一小时,分解出来的都是氢气,连一点氟的影子也没有。可当他拔掉U形管阳极一端的塞子时,惊奇地发现塞子上覆盖着一层白色粉末状的物质。氟到底还是分解出来了,不过和玻璃发生了反应。

这一发现使莫瓦桑受到了极大的鼓舞。他把不与氟起作用的萤石制成实验用的器皿,把盛有液体氢和氟化钾的混合物的U形铂管浸入制冷剂中,以铂铱合金作电极,用萤石制成的螺旋帽盖紧管口,管外用氯化甲烷作冷冻剂,使温度控制在-23℃,进行电解,终于在1886年6月26日第一次制得了单质氟。当时,莫瓦桑年仅34岁。

纳米科技

所谓纳米科学,是人们研究纳米尺度,即100纳米至0.1纳米这个微观范围内的物质所具有的特异现象和功能的科学;而纳米技术则是指在纳米科学的基础上制造新材料、研究新工艺的方法和手段。其实,从比较准确的意义上来讲,纳米科技诞生的时期应该还要早一些。

纳米抑菌贴1984年,德国著名学者格莱特利用现代技术把一块6纳米的铁晶体压制成纳米块,并详细研究了它的内部结构,结果发现它比普通钢铁的强度要高12倍,硬度要高2~3个数量级。而且这种纳米金属在低温下甚至会失去传导能力,并且随着尺寸的缩小,纳米材料的熔点也会随之降低。

格莱特的研究实际上只是开了一个头,从而导致了科学家们对物质在纳米量级内物理性能变化和应用的广泛研究。一般来讲,纳米颗粒的尺寸通常不超过10个纳米。在这个量级内,物质颗粒的大小意味着它已经很接近一个原子的大小了。在这种状态下,物质的性能和结构的变化已经是非连续性的了。就是说,量子效应开始发生作用。因此,用纳米颗粒最后制成的材料与普通材料相比,在机械强度、磁、光、声、热等方面都有很大不同,由此会产生许多完全不同的功用。

按目前的研究状况,纳术科技一般分为纳米材料学、纳米电子学、纳米生物学和纳米制造学、纳米光学等,这其中的每一门学科又都具有跨学科性质,是集研究与应用于一体的边缘学科与综合体系。很显然,纳米科学技术是一门以物理、化学两门基础学科的微观研究理论为基础,以先进的解析技术和工艺手段为前提的内容广泛的多学科综合体。它既不是某一学科的延伸和发展,也不是某一工艺技术革新的产物或转化。它是基础理论学科和当代高新技术紧密结合的产物。

尽管目前科学界在纳米科学技术领域已经取得了一系列重要的进展,并开发出了不少纳米材料和器件,但从严格的意义上讲,纳米科学技术在20世纪,仅是刚刚露出尖尖角的小荷,它的灿烂和美丽将是属于21世纪的。因而,这门学科的诞生可以说是20世纪的科学家们献给21世纪的一份珍贵的礼物。