书城公版Great Astronomers
6259200000080

第80章 AIRY.(2)

It may here be remarked that these early volumes of the publications of the Cambridge Observatory contained the first exposition of those systematic methods of astronomical work which Airy afterwards developed to such a great extent at Greenwich, and which have been subsequently adopted in many other places. No more profitable instruction for the astronomical beginner can be found than that which can be had by the study of these volumes, in which the Plumian Professor has laid down with admirable clearness the true principles on which meridian work should be conducted.

[PLATE: SIR GEORGE AIRY.

From a Photograph by Mr. E.P. Adams, Greenwich.]

Airy gradually added to the instruments with which the observatory was originally equipped. A mural circle was mounted in 1832, and in the same year a small equatorial was erected by Jones. This was made use of by Airy in a well-known series of observations of Jupiter's fourth satellite for the determination of the mass of the great planet. His memoir on this subject fully ex pounds the method of finding the weight of a planet from observations of the movements of a satellite by which the planet is attended. This is, indeed, a valuable investigation which no student of astronomy can afford to neglect. The ardour with which Airy devoted himself to astronomical studies may be gathered from a remarkable report on the progress of astronomy during the present century, which he communicated to the British Association at its second meeting in 1832. In the early years of his life at Cambridge his most famous achievement was connected with a research in theoretical astronomy for which consummate mathematical power was required. We can only give a brief account of the Subject, for to enter into any full detail with regard to it would be quite out of the question.

Venus is a planet of about the same size and the same weight as the earth, revolving in an orbit which lies within that described by our globe. Venus, consequently, takes less time than the earth to accomplish one revolution round the sun, and it happens that the relative movements of Venus and the earth are so proportioned that in the time in which our earth accomplishes eight of her revolutions the other planet will have accomplished almost exactly thirteen. It, therefore, follows that if the earth and Venus are in line with the sun at one date, then in eight years later both planets will again be found at the same points in their orbits. In those eight years the earth has gone round eight times, and has, therefore, regained its original position, while in the same period Venus has accomplished thirteen complete revolutions, and, therefore, this planet also has reached the same spot where it was at first. Venus and the earth, of course, attract each other, and in consequence of these mutual attractions the earth is swayed from the elliptic track which it would otherwise pursue. In like manner Venus is also forced by the attraction of the earth to revolve in a track which deviates from that which it would otherwise follow. Owing to the fact that the sun is of such preponderating magnitude (being, in fact, upwards of 300,000 times as heavy as either Venus or the earth), the disturbances induced in the motion of either planet, in consequence of the attraction of the other, are relatively insignificant to the main controlling agency by which each of the movements is governed.

It is, however, possible under certain circumstances that the disturbing effects produced upon one planet by the other can become so multiplied as to produce peculiar effects which attain measurable dimensions. Suppose that the periodic times in which the earth and Venus revolved had no ****** relation to each other, then the points of their tracks in which the two planets came into line with the sun would be found at different parts of the orbits, and consequently the disturbances would to a great extent neutralise each other, and produce but little appreciable effect. As, however, Venus and the earth come back every eight years to nearly the same positions at the same points of their track, an accumulative effect is produced. For the disturbance of one planet upon the other will, of course, be greatest when those two planets are nearest, that is, when they lie in line with the sun and on the same side of it. Every eight years a certain part of the orbit of the earth is, therefore, disturbed by the attraction of Venus with peculiar vigour. The consequence is that, owing to the numerical relation between the movements of the planets to which I have referred, disturbing effects become appreciable which would otherwise be too small to permit of recognition. Airy proposed to himself to compute the effects which Venus would have on the movement of the earth in consequence of the circumstance that eight revolutions of the one planet required almost the same time as thirteen revolutions of the other. This is a mathematical inquiry of the most arduous description, but the Plumian Professor succeeded in working it out, and he had, accordingly, the gratification of announcing to the Royal Society that he had detected the influence which Venus was thus able to assert on the movement of our earth around the sun. This remarkable investigation gained for its author the gold medal of the Royal Astronomical Society in the year 1832.