希尔伯特零点定理(Hilbert's Nullstellensatz)是古典代数几何的基石,它给出了域 k 上的 n 维仿射空间中的代数集与域 k 上的 n 元多项式环的根理想的一一对应关系,此外,它的一个较弱版本给出了仿射空间中的点与多项式环的极大理想之间的一一对应关系,由此建立了代数和几何之间的联系,使得人们可以用交换代数的手段研究几何问题.