书城现实数学大帝
57676100000265

第265章 拓扑学

各种例子诞生拓扑学以来,拓扑学开始作为数学正统之一来发展。

发现了很多个例子,把他们归结成拓扑学。

然后开始实用严格的方法去规定他们。

然后对不同的拓扑学开始分类,分成几个标准的类型,以此来作为构造复杂拓扑形状的原件。这就是让拓扑与群联系起来。

然后开始准备进行装配,配边等方法让不同的拓扑组合起来。

然后对奇点,无穷大点进行修补,补好了可以让形状变动普通。

让拓扑学与微分集合合起来,解释多个关于拓扑本身性质的问题。

寻找的重要的例子,莫比乌斯带、克莱因瓶、庞加莱猜想和椭圆曲线与圆环的组合等等。

康托儿数字与拓扑联系起来。

123

《基础拓扑学》是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。

123

1966年,英国拓扑学家马克·阿姆斯特朗对自己的老师知名拓扑学家 Erik Zeeman说:“拓扑学是如何开始的?”

Erik Zeeman说:“从欧拉的七桥定理开始的,从这个中间把七桥的模型画成图论,从图论中分析出拓扑等价。”

马克说:“听起来很简单,那如何去研究拓扑学呢?”

Erik Zeeman说:“主要就是分类,对不同的拓扑结构进行分类。分类出很多曲面,对曲面解构成抽象空间,然后找到拓扑不变量去分类。”

马克说:“那要分类很多曲面,是什么曲面?有标准吗?”

Erik Zeeman说:“是的,要严格的连续曲面,不能是离散的。”

马克说:“如何说明是连续的?”

Erik Zeeman说:“就跟我说的一样,这是一个抽象空间,这个空间需要由开集和闭集这样的东西给组成。然后开集和闭集需要引入连续映射系统来完整这个函数的描述。”

马克说:“为什么要用开集和闭集这样的东西?”

Erik Zeeman说:“因为严格。如果使用几何、数字、符号或者是其他的描述拓扑的系统,都缺乏严格性。如果时间久了会出现很多我们不想要的漏洞。”

马克说:“我明白了。”

Erik Zeeman说:“在这样的前提下,就可以大胆的研究映射,让曲线充分的施展开来。可以让普通的曲线因为映射充满整个空间。同时开始使用Tietze扩张定理。”

马克说:“扩张?如何扩张?”

Erik Zeeman说:“是R的n维空间的有理点集,扩张到整个空间。”

马克说:“扩张到所有的无理点集?”

Erik Zeeman说:“恩,是这个意思。”

马克说:“不错,可是刚刚说的这个开集和闭集,这个如何算严格,怎么去连续,变得光滑?”

Erik Zeeman说:“需要有紧致性和连通性,加有界闭集这种概念。闭集是bai两边类似[1,10];有界集两边是(1,10],[1,10)两种。”

马克说:“有界之后,如何紧致化?”

Erik Zeeman说:“这是海涅-博雷尔定理或有限覆盖定理、定理的主要内容是度量空间的子集是紧致的,当且仅当它是完备的并且完全有界的。”

马克说:“是子集紧致就行吗?那能不能在详细一些,紧致空间的性质是什么?”

Erik Zeeman说:“紧致性本质上是有限性条件,有限性条件破解类似一日之椎,日取其半,万世不可遏这样的意思。假如孙悟空在如来的手掌心翻跟斗,跟斗云是一个任意序列,停在如来的手指旁是存在一个子列收敛,留下到此一游的字和撒尿是在一个有界的闭集里。或者一个瓶子里装高尔夫球后,可以装石子,然后还可以装沙子,最后还可以装水,这都说明原来的东西不够紧。这些都可以作为例子来想。”

马克说:“不错,这个解释变得清晰了一些。”

234说:“然后,就需要了解乘积空间。”

马克说:“乘积空间是干什么的,是要把拓扑空间乘起来吗?”

234说:“没错,打个比方,就是R的n维空间是n个R直线乘起来的。”

马克说:“这个是在高纬度实数坐标中的一种比喻。”

234说:“现在开始研究连通性。如果非空的A和B都是分离并,他们都在X中,一般是不连通的。”

马克说:“什么?”

234继续说:“如果X让分离并连通了,就称之为连通的。”

马克说:“R的n维空间是连通的吗?”

234说:“是连通的。”