书城现实数学大帝
57676100000108

第108章 千禧年七猜想之三:佩雷尔曼破解庞家莱猜想

这个猜想已经被佩雷尔曼解决,也是唯一个被解决的猜想。

在1904年,法国数学家亨利·庞加莱提出了一个拓扑学的猜想:

“任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。”

简单的说,一个闭的三维流形就是一个有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维球面。

后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。

1961年,斯梅尔(Smale)证明了n > 4的高维庞加莱猜想,即同伦等价于n维球面的n维闭流形必定是n维球面。

1982年,弗里德曼(Freedman)证明了同伦等价于4维球面的4维闭流形必定是4维球面。这是在1961年斯梅尔的工作之后证明了高维庞加莱猜想的进一步情形。