书城科普读物探究式科普丛书-可回收使用的废物
48713100000007

第7章 环境保护的科学方法(4)

油页岩很像石油,除了液态的碳、氢物质外,还含有少量氧、氮和硫的化合物。油页岩经过进一步加工提炼,可以制得汽油、煤油、柴油等液体燃料,具有与石油相同的作用。

油页岩炼油过程中还能得到许多副产品:硫酸铵可制作肥料;酚类和吡啶可生产合成纤维、塑料、染料、药物等化工原料;排出的气体,如同煤气一样,是气体燃料;留下的油页岩灰渣,可用来制造水泥熟料、陶瓷纤维、陶粒等建筑用材。油页岩可谓“全身都是宝”。

7.能源“水晶”——可燃冰

提到能源,人们立即想到的是能燃烧的煤、石油或天然气,很少想到晶莹剔透的“冰”,而“可燃冰”就是一种可燃烧的“冰”。

它是天然气水合物,外表极似冰雪,点火即可燃烧。天然气水合物存在于海底或陆地冻土带内,是由天然气与水在高压低温条件下结晶形成的固态笼状化合物。纯净的天然气水合物呈白色,形似冰雪,可以像固体酒精一样直接被点燃,因此又被称为“可燃冰”。1立方米的天然气水合物可以释放出164立方米的天然气。

迄今为止,在世界各地的海洋及大陆地层中,已探明的“可燃冰”储量已相当于全球传统化石能源(煤、石油、天然气、油页岩等)储量的两倍以上,其中海底可燃冰的储量够人类使用1000年。同等条件下,可燃冰燃烧产生的能量比煤、石油、天然气要多出数十倍,而且燃烧后不产生任何残渣和废气,避免了最让人们头疼的污染问题。如此数量巨大的能源是人类未来动力的希望,是21世纪具有良好前景的后续能源。

然而,天然气水合物在给人类带来新的能源前景的同时,对人类生存环境也提出了严峻的挑战。天然气水合物中的甲烷,其温室效应为二氧化碳的20倍,温室效应造成的异常气候和海面上升正威胁着人类的生存。如果开采不当,后果绝对是灾难性的。另外,陆缘海边的可燃冰开采起来十分困难,一旦出了井喷事故,就会造成海啸、海底滑坡、海水毒化等灾害。所以,可燃冰的开发利用就像一把双刃剑,需要小心对待。

8.充满希望的新能源——生物能源

生物能源又称绿色能源,是指从生物质得到的能源。它是人类最早利用的能源,也一直是人类赖以生存的重要能源。古人钻木取火、伐薪烧炭,实际上就是在使用生物能源。

“万物生长靠太阳”,生物能源是从太阳能转化而来的,只要太阳不熄灭,生物能源就取之不尽。生物能源的转化过程是通过绿色植物的光合作用将二氧化碳和水合成生物质,生物能源的使用过程又生成二氧化碳和水,形成一个物质的循环,理论上二氧化碳的净排放为零。

生物能源是一种可再生的清洁能源。利用高技术手段开发生物能源,已成为当今世界发达国家能源战略的重要部分。

21世纪是生物的世纪,是科学技术飞速发展的新世纪,而可持续发展是当前经济发展的趋势所在。面对化石能源的枯竭和环境的污染,生物能源的开发利用为经济的可持续发展带来了曙光。生物能源作为可再生、污染极小的能源,具有无可比拟的优越性,必将为21世纪的经济发展和环境保护注入强大的推动力。

当前,生物能源的主要形式有四种:沼气、生物制氢、生物柴油和燃料乙醇。

(1)生物能源——沼气

沼气是一种可燃气体,由于这种气体最早是在沼泽、池塘中发现的,所以人们称它“沼气”我们通常所说的沼气并不是天然产生的,而是人工制取的,所以它属于二次能源。沼气对于目前我国广大农村来说,是一种比较理想的家庭燃料。它可以用来煮饭、照明,既方便,又干净,还可节约大量柴草。

沼气多为就地制取、就地使用的能源,不需要远距离运输和传送,减轻了运输负担,也减轻了农民的经济负担。

沼气不仅是一种干净的能源,而且在工业生产上还可作为化工原料使用。沼气的主要成分是甲烷,这种气体在高温下能分解成碳和氢,因此,沼气可用来制造氢气和炭黑,并能进一步制造乙炔,合成汽油、酒精、塑料、人造纤维和人造皮革等各种化工产品,用途十分广泛。

(2)绿色能源——生物柴油

生物柴油是生物质能的一种,是清洁的可再生能源。它是以大豆和油菜子等油料作物、油棕和黄连木等油料林木果实、工程微藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料。

生物柴油是一种优质清洁柴油,可从各种生物质提炼,因此可以说是取之不尽、用之不竭的能源,在资源日益枯竭的今天,有望取代石油成为替代燃料。生物柴油是典型“绿色能源”,大力发展生物柴油对经济可持续发展、推进能源替代、减轻环境压力、控制城市大气污染具有重要的战略意义。

(3)巴西打造生物能源大国——生物燃料

如今全世界都在进行生物能源的开发,但是最成功的例子就是巴西。巴西可再生能源占全国能源的比例高达44.7%,而全球平均仅为13.3%。巴西的可再生能源主要是乙醇和水力发电,其中乙醇的比重日益提高。

巴西利用甘蔗发酵生产酒精,因为甘蔗的含糖量高,所以酒精的产量也很高。巴西的法律规定,汽车的燃料中必须加入10%~25%的酒精作为燃料。而且在20世纪,巴西就发明了乙醇汽车,其以纯酒精作为燃烧动力,这样不仅使巴西的石油进口量减少,而且环境也得到很大的改善。不仅如此,酒精的大面积生产带给巴西的经济效益也是巨大的。巴西成功的例子是世界上发展生物能源学习的典范。

(4)世纪的理想能源——氢能

氢气是高效、清洁、可再生的能源,在全球能源系统的可持续发展中将起到重要作用,并将对全球生态环境产生巨大的影响。采用氢能源是当前世界公认的可代替石油能源的主要出路之一。氢本身是可再生的,在燃烧时只生成水,不产生任何污染物,甚至也不产生二氧化碳,可以实现真正的“零排放”。此外,与其他含能物质相比,氢还具有一系列突出的优点:首先,氢的能量密度高,是普通汽油的2.68倍;用于贮电时,其技术经济性能目前已有可能超过其他各类贮电技术;将氢转换为动力,热效率比常规化石燃料高30%~60%,如作为燃料电池的燃料,效率可高出一倍;氢适于管道运输,可以和天然气输送系统共用。其次,在各种能源中,氢的输送成本最低,损失最小,优于输电;氢与燃料电池相结合可提供一种高效、清洁、无传动部件、无噪声的发电技术。小型的低温固体离子交换膜燃料电池可用在汽车和火车机车上,氢也能直接作为发动机的燃料,因此国际上一些着名的汽车公司已经开始大力开发电动汽车产品。

早在1965年,外国的科学家们就已设计出了能在马路上行驶的氢能汽车。中国也在1980年成功地造出了第一辆氢能汽车。氢能汽车行车路远,使用的寿命长,最大的优点是不污染环境。近年来,国际上以氢为燃料的“燃料电池发动机”技术取得重大突破,而“燃料电池汽车”已成为推动“氢经济”的发动机。

因此,氢能汽车具有广阔的应用前景。

9.魔鬼与天使——核能

核能是人类历史上的一项伟大发明。在1945年之前,人类在能源利用领域只涉及物理变化和化学变化。第二次世界大战期间,原子弹诞生了。人类开始将核能运用于军事、能源、工业、航天等领域。

核能是人类最具希望的未来能源。目前人们开发核能的途径有两条:一是重元素的裂变,如铀的裂变;二是轻元素的聚变,如氘、氚、锂等。重元素的裂变技术已得到实际性的应用,而轻元素聚变技术也正在积极研制之中。

不论是重元素铀,还是轻元素氘、氚,在海洋中都有相当巨大的储藏量。以目前世界能源消费的水平来计算,地球上能够用于核聚变的氘和氚的数量可供人类使用上千亿年。因此,有关能源专家认为,如果解决了核聚变技术,那么人类将能从根本上解决能源问题。

核能发电是利用核反应堆中核裂变所释放出的热能进行发电的方式,它与火力发电极为相似,其奥妙主要在于核反应堆。

与火电厂相比,核电站是非常清洁的,不排放有害物质也不会造成温室效应,因此能大大改善环境质量,保护人类赖以生存的生态环境。

但是,在核工业生产和科研过程中,会产生一些不同程度的放射性物质,这些物质的含量虽然很低,危害却很大,如果在事故中释放到外界环境,会对生态及民众造成伤害,因此必须慎重处理。

几乎所有的国家,包括技术和管理最先进的国家,都不能保证核电站的绝对安全。例如,前苏联的切尔诺贝利事故和美国的三里岛事故影响都非常大,日本也出现过核泄漏事故。核电站还是战争或恐怖主义袭击的主要目标,遭到袭击后可能会产生严重的后果,所以目前发达国家都在缓建核电站。

我国最早的核电站是坐落于浙江省海盐县秦山双龙岗的秦山核电站,它面临杭州湾,背靠秦山。秦山核电站附近不仅风景如画、水源充沛、交通便利,还靠近华东电网枢纽,是建设核电站的理想之地。它是我国第一座自己研究、设计和建造的核电站,1984年破土动工,1991年12月15日并网发电,设计寿命30年。厂区主要包括七个部分:核心部分、废物处理、供排水、动力供应、检修、仓库、厂前区等。秦山核电站设计广泛采用了国外现行压水堆核电站较成熟的技术,并进行了相当规模的科研和试验工作,始终把安全放在首位。为防止放射性物质外泄,设置了三道屏障,第一道是在系统内把燃料蕊块密封组成燃料元件棒;第二道为高强度压力容器和封闭的回路系统;第三道屏障则为密封的安全壳,防止放射性物质外泄。此外,还有安全保护系统、安全壳空气净化和冷却系统、应急柴油发现机组等,使反应堆发生事故时能自动停闭和自动冷却堆蕊。

秦山核电站的建成结束了中国内地无核电的历史,机组运营状态一直处于良好状态,是我国自力更生和平利用核能的典范。经过二、三期工程的建设,秦山核电站已经成为总装机容量300万千瓦的中国核电基地。