书城科普读物探索神秘的大自然:变幻莫测的大自然
47687800000021

第21章 气候变迁小考

气候变迁指在较长的一段时间里,一个或几个气候要素有规律地变化的过程,通常用不同时期的温度和降水量等气候要素的差异来表现。气候变迁的时间尺度往往是几百年、几千年、几万年甚至更长。

地球上各种自然现象都在不断变化之中,气候也不例外。据地质考古资料、历史文献记载和气候观测记录分析,地球上的气候一直不停地在发生周期性的变化。从时间尺度和研究方法来分析,地球气候变化可分为3个阶段:

(1)地质时期气候变化:是指距今22亿~1万年前的气候变化。这个时期气候变化的幅度很大,它不但形成了各种时间尺度的冰河期和间冰河期的相互交替,同时也相应地存在着生态系统、自然环境等的巨大变迁。按当前的科学概念,地质时期的气候变化是体现了大气、海洋、大陆、冰雪和生物圈等组成的气候系统的总体变化。

(2)历史时期气候变化:是指1万年左右以来,特别是人类有文字记载以来的气候变化,是近代气候变化的背影。由于历史时期可供考证的文物古迹、文字记载和气象观测记录更加丰富,所以用历史记载所得出的资料是弥补现代仪器观测资料年代太短的手段。

循环的气候变迁(3)近代气候变化:是指近200~300年以来的仪器观测时期。随着近代气象观测仪器的出现,可以普遍使用精确的气象观测记录来研究气候变化。

大冰期与气候变化

关于地球远古时代的气候,随着时代的久远,我们的认识有些模糊不清。地球形成为行星大约在55亿年前,从那时候开始直到46亿年前,地球上充满原始大气,并且逐渐逃逸。从46亿年前开始,地球进入到地质年代,逐渐产生次生大气。大约在30亿年前,地球上出现生命,开始改造地球大气,到寒武纪,大气才被生物改造成现在这个样子。但是,对古代以前的古气候,我们几乎是一无所知,到了古生代,古气候状况才逐渐清楚起来。

我们大体上知道,在地质时期反复经过几次大冰期,其中从古生代以来,就有3次大冰期。它们是:震旦纪大冰期、石炭纪二叠纪大冰期、第四纪大冰期。大冰期之间是比较温暖的间冰期。

每2次冰期之间,大约是2亿~3亿年。为什么有这样长的周期呢?一种意见认为,可能与造山运动有关系。地质上的大造山运动,往往使地面起伏程度加大,全球变冷。因为山脉越高,引起大气的热机效率就越高,上升运动增强,云雨增多,反射率增大,地面接收的太阳辐射能量减少,地表变冷。

3次大冰期与地质时代三次强烈的造山运动相对应。震旦纪大冰期产生在元古代末地壳运动以后,石炭纪二叠纪大冰期与海西运动相对应,第四纪大冰期与喜马拉雅运动对应。这不是偶然的。现在,喜马拉雅山还在升高,造山运动并未停止,所以第四纪大冰期还远未结束。现在,喜马拉雅运动还不到7000万年,第四纪大冰期还只200多万年。所以,这次大冰期还会延续下去,至少还要持续1万~2万年。

另一种意见认为,地质历史上的大冰期和大间冰期,是由于地球的黄道倾斜的大波动造成的。这种观点认为,黄道倾斜的范围是在0°~54°之间,黄道倾斜大的时期代表着冰川流行的时期,在3次大冰期期间,黄道倾斜曾有过10°~23.5°的变化。

那么,造山运动为什么也有2亿~3亿年的周期呢?地球黄道倾斜为什么也有2亿~3亿年的波动呢?澳大利亚人威廉斯认为,这种气候变迁与地球在银河系的位置有关系。因为地球不停地绕太阳公转。整个太阳系也绕着银河系中心公转。这样转一圈的时间约2.5亿年,太阳系又回到原来的位置。

第四纪冰期的气候变化

我们说现代正处在第四纪太冰期中,其实,第四纪大冰期中的气候也有很大的变化,曾经出现几次亚冰期和亚间冰期。变化的时间短则几千年,长则几万年或十几万年。

在20世纪初,地质学家根据阿尔卑斯山区的资料,确定那里存在4次亚冰期的规律。这就是:群智亚冰期、民德亚冰期、里斯亚冰期和武木亚冰期。在这些冰期之间是亚间冰期。以后在北欧、北美、亚洲等地也纷纷找到了对应的亚冰期。在我国对应的亚冰期是:鄱阳亚冰期、大姑亚冰期、庐山亚冰期和大理亚冰期。

在第四纪的冰期中,仍然有寒冷和温暖更替。在寒冷时期,雪线高度下降,冰川前进,出现亚冰期,以民德(我国为大姑)亚冰期和里斯(庐山)亚冰期的冰川规模最大,群智亚冰期规模最小。在温暖时期,气温升高,雪线高度上升,冰川退缩,出现亚间冰期。民德—里斯(大姑—庐山)亚间冰期长达17万~18万年。在第四纪大冰期,高纬度气温的急剧下降,导致两极地区形成永久冰盖;在亚冰期,冰川一直伸展到中纬度,在亚间冰期才退缩到高纬度。

根据科学研究发现,从亚间冰期向亚冰期过渡时,气候常呈渐变形式,其中没有清楚的界线。从亚冰期向亚间冰期过渡时,气候常呈突变形式,两者之间有明确的分界线。科学家们称为终止线。在距今1.1万年前后出现了一条终止线,标志着最近一次亚冰期结束了,随之而来的是一次新的亚间冰期,气候由冷增暖。

在第四纪大冰期中,为什么会有亚冰期和亚间冰期的更替呢?按照南斯拉夫气候学家来兰柯维奇在20世纪30年代提出的理论,是由于地球轨道3要素的自然小波动造成的。地球轨道3要素是指:地球轨道的偏心率、地轴的倾斜度和春分点的位置。

地球绕太阳公转的轨道是一个椭圆,太阳位于椭圆的一个焦点上。这样,地球处在轨道的不同位置,距离太阳的远近就不相同,获得的太阳辐射能量就有差异,如冬季在远日点,夏季在近日点,冬季就寒冷而漫长,夏季炎热而短促。地球轨道现在的偏心率是0.164,但是偏心率在0.00~0.06的范围内变动。它的变动周期约为96000年。偏心率的变化影响日地距离,从而影响太阳辐射强度,导致影响地球上的气候。

地球在春分点处在地球公转轨道上的什么位置,将影响季节的起止时间,也会使近日点和远日点的时间发生变化。地球在春分点的位置,是沿着地球公转轨道向西缓慢地移动,大约每21000年,春分点的位置在地球公转轨道上移动1周。春分节气的时间,每隔70年就要推迟1天。现在北半球夏季远日,冬季近日,夏季比冬季长8天。大约10000年后,就会变成冬季远日,夏季近日,冬季反而会比夏季长8天。就是说,不太冷而且短促的冬季,将会变成寒冷而漫长的冬季。

地轨倾斜又称黄赤交角,是地球上产生四季的原因。地轨倾斜度的变化,会导致回归线和极圈的纬度发生变化,从而改变地球上的季节。地轨倾斜使回归线在纬度22.1°~22.4°之间变化,使极圈在67.9°~65.76°之间变化。变动的时间周期41000年。地轨倾斜度增大时,回归线纬度升高,极圈纬度降低,高纬度的年太阳辐射总量增加,冬寒夏热、气温年较差增大,低纬度的年太阳辐射总量减少。地轨倾斜度减少时,高纬度冬暖夏凉,气温年较差减少,夏季温度低更有利于冰川发展。

历史时期的气候变化

从第四纪更新世晚期,距今1.1万年前后开始,地球从第四纪冰期中的最近一次亚冰期,进入到现代的亚间冰期,人们也称之为冰后期。这一段时间大体上相当于人类进入到有文字记载的历史时代。关于这时期的气候,挪威的冰川学家曾做出近10000年来的雪线升降图,说明雪线升降幅度并不小,表明冰后期以来,气候有明显的变化。中国有悠久的历史记载,竺可桢将这些记载加以整理分析,发现我国在5000多年来的气候有4次温暖期和4次寒冷期交替出现。

在公元前3000~前1000年左右,即从仰韶文化时代到安阳殷墟时代,是第一个温暖期,这个时期大部分时间的年平均温度比现在高2℃左右,最冷月温度约比现在高3~5℃。

公元前约1000年~前850年(周代初期),有一个短暂的寒冷期,温度在0℃以下。

公元前770年~公元初年,即秦汉时代,又进入到一个新的温暖时期。

公元初年~公元600年,即东汉、三国到六朝时代,进入第二个寒冷时期。

公元600~1000年,即隋唐时代,是第三个温暖期。

公元1000~1200年,即南宋时代是第三个寒冷期,温度比现代要低1℃左右。

公元1200~1300年,即宋末元初,是第四个温暖期,但是这次不如隋唐时那样温暖,逐渐由淮河流域移到长江流域以南,如浙江、广东、云南等地。

在公元1300年以后,即明、清时代以来,是第四个寒冷期,温度比现代要低1~2℃。

近5000年来,虽然是寒冷期与温暖期交替出现,但是总的趋势是由温暖向寒冷变化,寒冷期一次比一次长,一次比一次冷。在第二次寒冷期,只有淮河在公元225年有封冻。而在第四个寒冷期的1670年,长江都几乎封冻了。

有趣的事情是:挪威冰川学家用雪线高度表示气温升降,竺可桢用的是历史文献记载资料,结果却十分一致,说明冰后期以来的气候变化具有全球的普遍性,绝对不是一种巧合。近代的气候变化从1850年农业机械化开始以来,近100多年来的气候变化,我们称之为近代气候变化。近百年来气候变化的基本趋势是:1961年以后的世界气候与20世纪前半期相比有显著不同,而与19世纪后半期相类似。从19世纪末期开始,到20世纪40年代,是世界性气候增暖时期,增暖的趋势在20世纪40年代达到顶峰,以后温度下降,20世纪60年代后变冷更加明显,这次变化很可能是近10000年来的一次气候振动。

这种振动可以从大气环流变化中得到解释。根据英国气候学家拉姆巴的说法,从1895年开始,世界环流突然由经向环流占优势的时期,转变为纬向环流占优势的时期。从此,纬向环流不断加强。到1940年前后达到最盛时期;随后,纬向环流又逐渐减弱,经向环流又逐渐加强,到1961年前后,纬向环流显著减退,重新恢复成为经向环流占优势的时期。

在纬向环流强盛时期,气旋性活动增强,行星风系影响加剧,南北半球的气候带向两极方向移动。在纬向环流衰弱的时期,反气旋性活动加强,季风发达,南北半球高低纬度之间气流交换频繁。地球上的气候带向赤道方向移动。可见,世界环流模式的改变,对全球性气候变化的影响多么巨大。

海西运动

海西运动,由德国海西山得名。其所形成的褶皱带,称海西或华力西褶皱带。海西运动起初在德国用于不同时期褶皱、断裂作用造成的任何山地,后限指晚古生代造山运动。海西运动使西欧的海西地槽、北美东部的阿帕拉契亚地槽、欧亚交界的乌拉尔地槽、中亚哈萨克地槽及中国的天山、祁连山、南秦岭、大兴安岭等地槽褶皱回返,形成巨大山系。此时北半球各古地台之间的地槽带变为剥蚀山地。海西运动的完成,标志着古生代的结束。