书城科普读物科学伴你行——忠诚的地球卫士
45971600000010

第10章 丰富多彩的太阳活动(3)

这里,我们对彗星感兴趣完全出于另外的理由,就是彗星的指向究竟意味什么力起作用?

游散的彗星物质碎块一般是冷的,由于它们离我们很远,看不见。这种彗星物质在偏心的轨道上运行,迟早总要运行到太阳附近。当它们运行到太阳附近时,在太阳的影响下,就可以看到前所未有的惊人壮观。由于太阳的加热作用,从固体彗核中会逸出气体。从分光镜中可以看出,它们是一氧化碳和氮。这些气体以每秒钟1000公里的高速度离开彗核,在太阳光线的照射下开始发光。只有当彗星运行到近日点及其附近时,才能形成引人注目的彗尾。

彗尾的长度可达一亿公里,甚至二亿公里。

很早以前,天文学家发现,彗尾的指向有一个共同特征:总是背向太阳。

现在,人们自然相信,彗星后面总是拖着长长的尾巴。不过这仅仅是从地球上所处环境的角度来推测的。宇宙空间是没有空气阻力的,究竟是什么力量使彗星有长尾巴呢?假如在一般情况下,彗尾的方向从表面上看是任意的,无规则的,难以预测的。然而,彗尾指向实际上是很有规律的,而且每一个彗尾的指向总是向太阳的。

人们可以看到彗星开始趋近太阳时,即它在轨道上的头一个位置时,后面己拖曳了一个尾巴。彗星在轨道每个位置上的尾巴指向都是背向太阳的,当彗星越过近日点后,尾巴由原来后面变为在前面顶推着。

长期以来,根据这些观测知道,任何斥力都来自太阳,它使彗尾在宇宙空间像风信旗一样。不久前,确实还不清楚这一现象是由什么力引起的,有人认为,它也许是太阳光的压力效应。很早以前,人们看到彗星尾巴总是背着太阳,由此联想到太阳是不是也有风,当然这种风不是空气而是物质粒子流。正式提出太阳风这么一个很形象化的名称是20世纪50年代的事。60年代初,人造卫星和探测器在空间所进行的观测,不但证实了太阳风的存在,而且给出了太阳风的平均密度、速度等特征。从太阳风人们又联想到其他恒星是否也有“恒星风”。近年来,天文学家确已发现一些年轻恒星正以类似太阳风的形式失去物质。

1973年天空实验室的发射,把空间太阳观测发展到空前的新时代。长期观测表明,太阳风是最依赖太阳活动的现象。当太阳赤道存在冕洞时,地球附近就观测到高速太阳风,因此天文学家认为冕洞是高速太阳风的重要源泉。

太阳风也是影响地球的重要现象之一。当太阳风向地球极区吹来时,便在地球两极电离层上绘出了美丽的图画——极光,特别是太阳黑子多的时候,极光更是经常出现,并向中纬度延伸。极光的形态千变万化,有时像一片飘逸的云浮在天空,有时像黄绿色的一段弧悬在天穹,犹如空中彩桥,也有时像天上悬下来的一块色彩绚丽的幕布,还有时像一盏巨大的霓虹灯,光彩夺目。19世纪后半叶,物理学家的实验证明,极光是地球周围的一种大规模放电过程。科学家对太阳风的认证进一步揭开了极光之谜:来自太阳的带电粒子到达地球附近,地球磁场迫使它们之中的一部分沿着磁力线集中到地球的南北磁极。当它们闯入极地的高层大气时,同时大气中的分子和原子碰撞,从而使大气中的分子和原子激发,产生出光辉,引起了极光。由空间探测器获得的行星空间探测结果表明,极光现象并不局限于地球,太阳系内某些具有磁场的行星上也有极光。

太阳“风”在含义上的表达是最恰当的和直观的,因为,在一般的含义中,它显然与辐射无关,而与物质粒子的发射有关,这种粒子是很微小的,量级为原子级。显然,这里在字面上所指的是,从太阳吹向宇宙空间的风是一种极其稀薄的风,尽管具有很大的速度,但不能使地球上的旗帜飘扬起来。

但是,它的力量足以飘起稀薄得几乎无重量的物体,如彗尾。现在可以肯定,彗星风信旗所指示的风是由质子和电子组成的太阳风。极光也是由太阳风引起的。这两种神奇的太阳风效应,经过人们上百年的探索才搞清楚。

太阳活动与旱涝

旱涝是重大的自然灾害之一。大范围与持久的旱涝,会给人类带来严重的损失。明代崇祯时,大旱连三年,赤地千里,饿殍遍野。1975年8月河南南部特大暴雨,3天的降雨量比过去全年的降雨量还大,以致大水冲垮几个大水库,淹了几个县,经济损失约有5亿元。

因此,人们早就在研究旱涝的规律与成因,以求能早作预报与预防。

旱涝的发生是有一定规律可寻的。有些具有明显的周期性,有些则是随机的。当然,这里说的周期,并不是严格的周期,而是准周期。比如,我国降水变化大约有30~40年的周期,而长江中下游地区的降水,平均周期为35年(35年为著名的布鲁克纳周期);黄河流域的大干旱具有80~90年的周期;渤海的严重水情大约10年左右发生一次,等等。

我国的水文、气象学界十分重视对旱涝规律的研究。由于旱涝主要决定于气候演变,追根溯源,就是作气候演变规律的研究。我国悠久的历史上留下了丰富的水文、气象、物候的记事,为这方面的研究提供了宝贵的资料,这个优势是国外所不具备的。

研究表明,气候的若干周期与太阳活动周期有明显的对应关系。比如长江年径流量变化具有约22年周期,淮河有约10年周期,而西江、黄河、永定河与松花江流域有40年左右的周期,这些周期与太阳活动的基本周期非常一致。

近500年来,我国东半部地区的干旱指数具有2~3年、8~10年、22~26年的明显周期,这些周期跟太阳活动的几个周期很接近。

除了周期对应之外,太阳活动对气候的影响,即使在同一地区或同一流域,在不同的时期也是不一样的。比如在长江下游地区,太阳活动峰年与谷年附近,旱涝次数比其他年份要多。特别是,在峰年附近,涝的次数比旱的多;而在谷年附近,旱的次数比涝的多。如果就整个长江流域来说,也大致是这个情况。即在太阳活动峰年附近雨水多,易涝;在谷年附近雨水少,易旱。近500年来黄河流域的水旱情况,存在有“强湿弱干”的规律,也就是太阳活动强时,雨水较多;在太阳活动弱时,雨水较少。不过这种关系仍然很复杂,在太阳活动峰年时不一定有大水,而可能在活动峰年过后一二年才发生大水。

北京地区在近250年中,多雨的年份一般在太阳活动的谷年和峰年及其后一年,而少雨的年份则在谷年与峰年前一二年。

有人还研究了以耀斑爆发为主的太阳短期活动与天气的关系,也得到了许多有趣的结果。比如在四川盆地,太阳强耀斑后,常有多雨或大晴天天气出现,而在普通耀斑后,常出现比较异常的天气,如突然下冰雹等。

根据国内外的研究,太阳活动对大气、气候的影响是相当复杂的。同样是太阳峰年,有的地区是涝,而有的地区却是旱,这种差别的原因可能在于各地的自然地理条件不一样。

在研究太阳活动与大气、气候的关系时,人们也在探讨为什么有这种关系?究竟太阳是怎样影响天气、气候变化的可是至今没有一个完整的答案。

大家知道,大气运动的主要动力是太阳辐射热(以“太阳常数”为代表)。

如果太阳总辐射发生变化,就能引起大气环流的变化,导致某些地区发生干旱或洪涝。理论上估计,太阳常数变化1%,就会发生这种情况。可是,经过几十年的地面观测以及近年来通过人造卫星的观测,所得的结果都表明,太阳常数基本上保持不变。因此,这条路就被堵死了。

人们提出了几个间接的原因来说明太阳活动对气候的影响。有一个是“大气臭氧的屏蔽作用”的假说。在地面上空20~30公里的大气层中,臭氧的含量特别丰富,因而被称为“臭氧层”。臭氧能大量地吸收太阳发出的紫外线,使人类与生物免受太阳紫外线的辐射而遭到伤害,没有臭氧层的保护,包括人类在内的地球上的所有生物就不复存在了。

臭氧是由太阳紫外线辐射产生的。在紫外线辐射强时,臭氧含量就多;在紫外线辐射弱时,臭氧含量就少。所以,臭氧含量多少或臭氧层厚薄,跟太阳活动有直接的关系。在太阳活动峰年时,紫外线辐射最强,臭氧含量达最大;在谷年时,臭氧含量最少。

臭氧层对紫外线辐射进入低层大气和到达地面有明显的屏蔽作用。臭氧多时,进入低层大气和地面的能量减少,地面温度也因之有所降低;反之,则增高。这就会导致大气的异常变化,但是其中详细的机制等情况,仍然是不清楚的。更有人提出,全球臭氧含量与太阳活动关系是相反变化的,即在太阳活动峰年时,臭氧含量反而达到最小。这方面的分歧是相当大的,所以对于臭氧的屏蔽作用仍要进一步弄清。

近年来,由于大气电过程的观测与研究比较深入,所以有人提出“雷暴事件的触发”假说。地球大气中经常发生雷暴。雨云中带正电荷的部分与带负电荷的部分相遇,就发生雷鸣闪电,下起瓢泼大雨或暴雨。研究发现,雷暴事件与太阳活动有密切关系,太阳活动强时,耀斑比较多。耀斑产生的大量高能质子能穿到大气的低层(20公里以下),触发雷暴的发生。观测发现,耀斑发生后4天,全世界范围的雷暴增强和欧洲雷暴事件的发生达到最多。

另外,宇宙线也能穿到大气低层,促使大气发生电离,宇宙线也是雷暴的源泉之一。地面宇宙线的强弱都受到太阳活动的调制,所以,雷暴事件与太阳活动是密切相关的。

但是,目前对于雷暴的过程,以及大气如何影响大气变化,导致旱涝,仍然没有研究清楚。不过,大多数科学家认为,太阳活动通过大气电的过程影响于天气,可能是一个较好的途径。

未来,在弄清了太阳活动与大气、气候的关系后,人们也许可能通过太阳活动来作比现在准确得多的天气预报。

饱览日面

对广大的天文爱好者来说,太阳表面的一些剧烈活动是最理想的观测项目。从日地关系角度看,也是最有实际意义的观测课题。对于进行普及教育来说,也是最生动、最有趣味的内容之一。

(1)观测的特点

充分掌握太阳观测的特点,是做好观测的重要前提。太阳观测具有以下一些基本特点:太阳光极强——这就要求通过望远镜观测时,眼观或照相观测都需有严格的减光措施,千万注意保护自己和他人的眼睛。照相观测时,要防止机身漏光。投影观测时,要处理好日面特征和四周散射光的对比关系,镜筒系统不要长时间的对准太阳。太阳有大约30角分的视面,比较适宜用小型望远镜观测。观测时,日面上的活动现象受大气的宁静度和明晰度的影响较大。有观测室,也应注意室内外温差引起的剧烈气流变化对观测的影响;没有观测室,也不要放在水泥地面上,最好是草地上,还应注意工厂的烟尘和雪融化时的气流都会严重地影响成像质量。观测地点应长期稳定,基墩稳固,观测仪器最好是折射望远镜或折反射望远镜,并且是有跟踪设备的赤道装置。要长期的并且是连续的观测才有意义。另外,观测时还要注意,一天中,太阳的地平高度有变化,一年四季里,太阳的地平高度和出没方位也有变化。

(2)观测的内容

一般的光学望远镜主要是观测太阳光球层的活动现象:黑子、光斑和米粒组织。

太阳黑子:太阳黑子是光球上最明显的活动现象。它在日面上的形成、发展、消失、形态、多少、大小和分布等,都有一定的规律。我们所见到的黑子只是太阳向着地球这半球面上的情况。随着太阳的自转,黑子在日面上每天从东往西移动大约13度。黑子在日面上的东西分布是不对称的——东半球比西半球多,并且集中分布在日面中纬度区域,在纬度±45度以上区域,几乎没有见过黑子,在纬度±18度之间的区域,也很少见到黑子,而且南半球的黑子数往往比北半球多。一般说来,较完整的黑子是由本影和半影组成。