书城科普读物科学奥秘丛书-科学人物
45616400000011

第11章 天文学家(3)

开普勒的目光首先盯住火星。这是因为第谷的数据中对火星的观测占有最大篇幅。恰好,就是这个行星的运行与哥白尼理论出入最大。开普勒按照传统的偏心圆来探求火星的轨道。他做了大量尝试,每次都要进行艰巨的计算。在大约进行了70次的试探之后,开普勒才算找到一个与事实相当符合的方案。使他感到惊愕的是,当超出他所用数据的范围继续试探时,他又发现与第谷的其他数据不符。火星还是不听他的摆布……。

开普勒诙谐地写道:“我预备征服战神马尔斯,把它俘虏到我的星表中来,我已为它准备了枷锁。但是我忽然感到胜利毫无把握,这个星空中狡黠的家伙,出乎意料地扯断我给它戴上的用方程连成的枷锁,从星表的囚笼中冲出来,逃往自由的宇宙空间去了。”

开普勒计算出来的火星位置和第谷数据之间相差8分,即1.133度(这个角度相当于表上的秒针在0.02秒瞬间转过的角度)会不会是第谷弄错了呢?或是寒冷的冬夜把第谷的手指冻僵了,以致观测失误了呢?不会!开普勒完全信赖第谷观测的辛勤与精密,即使是这样微小的数值,第谷也是不会弄错的。他说:“上天给我们一位像第谷这样精通的观测者,应该感谢神灵的这个恩赐。一经认识这是我们使用的假说上的错误,便应竭尽全力去发现天体运动的真正规律,这8分是不允许忽略的,它使我走上改革整个天文学的道路。”可见,这两位天文学大师的工作在当时已达到何等惊人的精确性!

当开普勒意识到始终无法找出一个符合第谷观测数据的圆形轨道后,他就大胆摒弃这种古老的、曾寄希望的匀速圆周运动的偏见,尝试用别的几何曲线来表示所观测到的火星的运动。开普勒认为行星运动的焦点应在施引力的中心天体——太阳的中心。从这点出发,他断定火星运动的线速度是变化的,而这种变化应当与太阳的距离有关:当火星在轨道上接近太阳时,速度最快;远离太阳时,速度最慢。他并且认为火星在轨道上速度最快与最慢的两点,其向径围绕太阳在一天内所扫过的面积是相等的。然后,他又将这两点外面积的相等性椎广到轨道上所有的点上。这样便得出面积与时间成正比的定律。

随后,开普勒看出火星的轨道有点像卵形(幸运的是,他首先选中火星,而火星轨道的偏心率在行星中比起来是相当大的),在连接极大与极小速度两点方向的直径似乎伸得长些。这样,终于使他认识到火星是在椭圆的轨道上运动。

椭圆是人们比较熟悉的几何图形。我们可以从木工师傅那里学到它的机械画法:在木板上先定出两个点,钉上钉子,取一段定长而无伸缩性的线,把它的两端固定在钉子上,用铅笔套在里面,然后把线拉紧,慢慢移动铅笔,这样画出来的曲线便是一个椭圆。

这个画法告诉我们,椭圆上的任何一点到两个定点的距离之和保持不变。它的数学定义便是:若平面上动点到两定点的距离之和是常量,动点的轨迹叫做椭圆。两个定点叫做椭圆的焦点,焦点之间的距离叫做焦距。

椭圆的变化情形可用偏心率e来表示。椭圆的偏心率是它的焦距与它的长径的比率,e通常是用下式来表示的。

e=ca(c是半焦距,a是半长径)

∵c<a,∴e<1

可以看出,焦距越大,e的值越接近于1,椭圆形状越扁;反之,焦距越小,e的值越接近于零,椭圆形状越变浑圆;当焦距为零,偏心率e=0时,椭圆也就转化为圆。从这个意义上说,可以把圆看做是椭圆的一种特殊情形,即两个焦点重合的椭圆。

太阳系各个行星轨道的具体形状稍有不同。一般说来,它们的偏心率都很小,同圆形只有微小的差异。所以行星轨道可以近似地看作圆形,太阳的位置也可以近似地看作位于轨道的中心。这便是当年使开普勒绞尽脑汁的原因。

这一回又是几何学帮了天文学的大忙。假使没有古希腊人对圆锥曲线(平面截割圆锥所形成的曲线)的研究,这些美妙的定律也许不可能被发现。由于椭圆是圆锥曲线的一种,它那种圆而带扁的形状使开普勒想到火星可能在这样一种曲线的轨道上运动。跟着,利用古代几何学家对圆锥曲线寻找出来的许多性质,他肯定自己所作的假设是正确的,并将这两项发现推广到所有行星。

1609年,开普勒发表了《新天文学》一书和《论火星运动》一文,公布了两个定律:

(一)所有行星分别在大小不同的椭圆轨道上运动。太阳的位置不在轨道中心,而在轨道的两个焦点之一。

这是行星运动第一定律(也叫轨道定律)。

(二)在同样的时间里,行星向径在其轨道平面上所扫过的面积相等。

这是行星运动的第二定律(也叫面积定律)。

开普勒虽然摒弃行星等速度运动的偏见,但仍维护这一原则,只是把线速度相等换了个“面速度”相等。这使开普勒感到分外高兴。有了这个定律,可以计算任何时刻行星在轨道上的位置。

这两个重要的定律相继发现后,编制星表一事便轻而易举了。不仅“行踪诡秘”的火星永远逃不出星表的“囚笼”,驯服地沿开普勒给定的椭圆轨道运行,其余各个行星也都相继“被俘”。

奇妙的“2”和“3”

开普勒并不满足已取得的成就,他感到自己远远没有揭开行星运动的全部奥秘。他相信还存在着一个把全部行星系统连成一个整体的完整定律。

古人给了他启示,行星运行的快慢同它们的轨道位置有关,较远的行星有较长的运行周期。第二定律也表明,即使在同一轨道上,行星速度也因距太阳远近而变化。沿着这条思路,开普勒确信行星运动周期与它们轨道大小之间应该是“和谐”的。他要找出其间的数量关系来。

开普勒是怎样寻找这个关系的呢?他面对的只是一些观测数据,现在要在它们背后找出隐藏着的自然规律来,这就要求这位天文学家具有高度惊人的毅力和耐心。

开普勒和哥白尼一样,并不知道行星与太阳之间的实际距离,只知道它们距太阳的相对远近。他把地球作为比较标准:以日地平均距离(天文单位)为距离单位;以地球绕太阳运动周期(一年)为时间单位。把各个行星的公转周期(T)及它们与太阳的平均距离(R)排列成一个表,以探讨它们之间存在什么数量关系。

行星名称公转周期(T)太阳距离(R)

水星0.2410.387

金星0.6150.723

地球1.0001.000

火星1.8811.524

木星11.8625.203

土星29.4579.539

从这个表中可知,对水星而言,公转周期是0.241年,距离是0.387天文单位;而对金星来说,则分别为0.615年和0.723天文单位余类推。

这么一堆乱七八糟的数字能反映出什么规律性呢?像做数字游戏一样,开普勒对表中各项数字翻来覆去作各式各样的运算:把它们互相乘、除、加、减;又把它们自乘;时而又求它们的方根。这样,在很少有人了解和支持的困难情况下,他顽强地苦战达9年之久。经过无数次的失败,他终于找到一个奇妙的规律。他在原来的那个表里增添两列数字:

行星名称公转周期(T)太阳距离(R)周期平方(T2)距离立方(R3)

水星0.2410.3870.0580.058

金星0.6150.7230.3780.378

地星1.0001.0001.0001.000

火星1.8811.5243.543.54

木星11.8625.203140.7140.85

土星29.4579.539867.7867.98

从这个表的后面两列数字里,我们可以看出这个奇妙的规律:行星公转周期的平方与它同太阳距离的立方成正比。

即:

T2=R3

这就是行星运动的第三定律(也叫周期定律)。

由此可知,行星同太阳的距离,可以根据该行星公转的恒星周期来计算,即:

R=T2

这个谜一经猜破,似乎十分简单。但在谜底揭开之前,它着实叫开普勒耗尽心血。这对奇妙的“2”和“3”得来并非容易!

开普勒在获得这一成就时喜不自禁的写道:“(这正是)我十六年以前就强烈希望要探求的东西。我就是为这个而同第谷合作现在我终于揭示出它的真相。认识到这一真理,这是超出我的最美好的期望。大事告成,书已写出来了,可能当代就有人读它,也可能后世才有人读,甚至可能要等待一个世纪才有读者,就像上帝等了六千年才有信奉者一样。这我就管不着了”。他写得多么得意呀!

如果开普勒当时能知道对数运算的话,问题就要简单得多。若取表中各个行星的周期(T)和距离(R)的对数(见下表右边两栏列出的数字)进行比较:

行星名称周期(T)距离(R)lgTlgR

水星0.2410.3870.620.41

金星0.6150.7230.210.14

地星1.0001.00000

火星1.8811.5240.270.18

木星11.8625.2031.070.72

土星29.4579.5391.470.98

那就用不着开普勒那样高超的智慧,任何人都会立即看出:

lgT∶lgR=3∶2

这是一个十分重要的自然定律。不仅行星遵循着它,连同行星的卫星以及太阳周围的其他天体概无例外。从而可以确定,太阳和它周围的所有天体不是偶然的、没有秩序的“乌合之众”,而是一个有严密组织的天体系统——太阳系。

给天空立法

为了纪念开普勒在天文学上的功绩,上述行星运动三大定律,被命名为“开普勒定律”。它一经确立,本轮系彻底垮台,行星的复杂运动,立刻就失去全部神秘性。它成了天空世界的“法律”。后世学者尊称开普勒为“天空立法者”。

不知是什么原因,开普勒的这些重大发现却没有引起与他同时代的伽利略的足够重视。两人毕生都为哥白尼学说而奋斗,他们又是朋友,时有书信往来,然而对于开普勒的这一决定性的进展,伽利略一生和著作中竟没有留下任何痕迹。这也是科学史上的一桩怪事!

开普勒定律在天文学上有十分重大的意义:

首先,开普勒定律在科学思想上表现出无比勇敢的创造精神。远在哥白尼创立日心宇宙体系之前,许多学者对于天动地静的观念就提出过不同见解。但对天体遵循完美的均匀圆周运动这一观念,从未有人敢怀疑。开普勒却毅然否定了它。这是个非常大胆的创见。哥白尼知道几个圆合并起来就可以产生椭圆,但他从来没有用椭圆来描述过天体的轨道。正如开普勒所说,“哥白尼没有觉察到他伸手可得的财富”。

其次,开普勒定律彻底摧毁了托勒密的本轮系,把哥白尼体系从本轮的桎梏下解放出来,为它带来充分的完整和严谨。哥白尼抛弃古希腊人的一个先入之见,即天与地的本质差别,获得一个简单得多的体系。但它仍须用三十几个圆周来解释天体的表观运动。开普勒却找到最简单的世界体系,只用七个椭圆说就全部解决了。从此,不需再借助任何本轮和偏心圆就能简单而精确地推算行星的运动。

第三,开普勒定律使人们对行星运动的认识得到明晰概念。它证明行星世界是一个匀称的(即开普勒所说的“和谐”)系统。这个系统的中心天体是太阳,受来自太阳的某种统一力量所支配。太阳位于每个行星轨道的焦点之一。行星公转周期决定于各个行星与太阳的距离,与质量无关。而在哥白尼体系中,太阳虽然居于宇宙“中心”,却并不扮演这个角色,因为没有一个行星的轨道中心是同太阳相重合的。

由于利用前人进行的科学实验和记录下来的数据而作出科学发现,在科学史上是不少的。但像行星运动定律的发现那样,从第谷的20余年辛勤观测到开普勒长期的精心推算,道路如此艰难,成果如此辉煌的科学合作,则是罕见的。这一切都是在没有望远镜的条件下得到的!

除了发现行星运动定律外,开普勒在天文学上还作出有益的贡献。他没有辜负第谷的嘱托,于1627年刊布他终身的最后杰作——《路德福星表》。

这是天文史上值得称赞的一部星表,它的完备和准确度远胜过前人。在以后的百余年间,该表一直被天文学家和航海家们奉为至宝。它的形式几乎没有改变地保留到现在。我们现在可从《天文年历》或同类书刊中查知天体过去或未来的运动和准确位置。开普勒正是这方面工作的先驱。

开普勒自幼就损坏视力,没能成为一位天文观测家。他是“借别人的眼睛”作出自己的科学发现。可是他在光学理论和光学仪器研究方面却作过重大贡献。伽利略虽在望远镜的操作上有所改进,但他的望远镜原则上同荷兰眼镜匠制造的没有什么两样,由一块凸镜片(物镜)和一块凹镜片(目镜)合成。开普勒(比伽利略稍晚些)则设计出一种新型望远镜。他把伽利略式望远镜的凹镜片目镜改用一个小凸透镜,把长焦距的透镜和短焦距的透镜配合在一起,这好比给放大镜“戴上一付眼镜”,其倍率按物镜和目镜的焦距之比来决定。所成的像则是倒立的,这对天文学家来说,没有什么不方便。

开普勒式望远镜的特点是把目标放在两透镜的公共焦点上,能够测定微小角度。它后来被广泛应用于天文望远镜。

如同伽利略奠定实验力学的基础一样,开普勒则奠定了近代实验光学的基础。他看到光从已知光源以球面辐射出来,直觉地提出了光度随距离减弱的平方反比定律。

这样一位为科学发展开拓道路的勇士,一生却是在极端艰难的条件下度过的。连年的战争,长期漂泊,生活贫困以及来自教会的迫害,不断困扰着他。在他花甲之年,为向宫廷取20余年的欠薪,他长途跋涉去拉提明,于1630年11月15日染伤寒死在途中,只留下几件衣服和一些书籍。