书城科普读物探索未知-生物的细胞
45049700000004

第4章 细胞表面(2)

人工膜:生物膜的组分繁多,为便于研究,往往采用单一或几种脂质组成的各种人工膜结构:单分子层膜、累积膜、脂质体、平板双分子层脂膜等。另外,也可将蛋白质嵌入后组成重建膜。这些膜结构泛称“人工膜”。利用人工膜可对膜的各种物理化学特性进行深入研究。人工膜已在工程实际中得到应用,如从海水等溶液相中高效地分离和浓缩物质、利用能量转换膜原理开辟高效无污染的新能源、用作肾脏病患者的透析膜以及用于临床诊断和治疗等。

脂质体:脂质体是内部为水相、由脂质双分子层形成的闭合囊泡。其种类主要有:①小单片层囊泡,大小范围为0.02~0.05微米;②多片层囊泡,大小范围为0.2~10微米;③大单片层囊泡,大小范围为0.2~10微米。除了大小、脂质成分、荷电性外,脂质体制剂尚有两个重要的参数:俘获容积和包裹效率。前者指一定量脂质体所包封的容积(摩尔/升);后者指脂质双分子层所包裹的水相所占的比例(%)。脂质体作为药物载体已用于医药临床。脂质体的水相或疏水相中包封药物后能用于癌症、溶酶体贮积病、寄生虫病、体内重金属积聚、真菌感染、关节炎等多方面疾病的治疗。这种截体系统在体内有稳定、毒性小、药物缓慢释放等优点。若膜表面加以修饰(结合抗体或特异性糖链等)或研制敏感性脂质体(在外界特定条件下膜通透性剧增的脂质体),则能使脂质体在体内具有靶向性。脂质体也可作为真核细胞的基因载体用于生物技术领域。

平板双分子层脂膜:在分隔两个水相的隔板中间若有1小孔(面积一般小于1平方厘米,则小孔处的脂滴会逐渐形成厚度只有双分子层厚的膜,此即平板双分子层脂膜(BLM)。在BLM形成过程中,脂滴厚度逐渐变薄,此时从显微镜中看到膜的颜色由各种彩色变到黑色,故BLM又称黑膜。这种人工膜最适于膜电特性的测量研究。膜中嵌入离子通道等膜蛋白后,可方便地根据测量到的电特性研究通道特性、离子通透特性、膜融合特性等。若BLM中嵌入植物、动物以及细菌的对光敏感的色素活性物质,则可作为色素膜进行模拟研究,因为电化学测定法的灵敏度相当高,所以也可根据膜的电特性和通透特性的变化来检测环境中毒物的存在及其对机体作用的原初机制。

细胞膜

一、化学组成

细胞膜主要由脂质、蛋白质(包括酶)和多糖组成。脂质和蛋白质各约占膜干重的一半稍弱,多糖不到10%,水约占膜湿重的1/5。此外还有少量的无机离子等。

脂质:脂质中大部分是磷脂,其次是胆固醇,还有少量糖脂,有些细胞膜(如嗜盐菌膜)还含有硫脂,它们都是兼性分子。磷脂的亲水端含有磷酸和其他亲水基团(如胆碱、丝氨酸或乙醇氨等);疏水端大多是脂酰基(一般有16~18个碳原子)。细胞膜中磷脂分子的亲水端向外,疏水端向内排成脂质双分子层。胆固醇以其第三个碳原子上的羟基为亲水端,以芳香环作为疏水端与磷脂的相应部分并列在脂双层中。脂双层的内外两层中的脂质分子分布是不对称的。糖脂都在外层,糖残基位于脂双层的表面。磷脂在内外二层中的分布是不相等的。人红细胞膜的外层中磷脂酰胆碱和鞘磷脂较多,内层中磷脂酰乙醇氨和磷脂酰丝氨酸较多。

膜蛋白:细胞中大约有20%~25%左右的蛋白质分子是与膜结构结合的。根据这些蛋白质与膜脂的相互作用方式及其在膜中分布部位的不同,粗略地可分为两大类:外周蛋白和内部蛋白。①外周蛋白分布于膜的外表面,约占膜蛋白的20%~30%。它们通过离子键或其他的非共价键与膜脂相连,结合力较弱,只需用比较温和的方法,如改变介质的离子强度、pH或加入螯合剂等即可把外周蛋白分离下来,它们都为水溶性蛋白质。②内部蛋白约占膜蛋白的70%~80%,它们有的部分嵌入双分子脂质层中,有的跨膜分布,还有的则全部埋藏在双分子层的疏水区内部。由于内部蛋白主要靠疏水键与膜脂相互结合,因而只有在较为剧烈的条件下(如超声、加入去垢剂或有机溶剂等)才能把它们从膜上溶解下来。

多糖:细胞膜约含5%~10%的多糖,由于参与组成的单糖彼此间结合方式复杂多样,得到的寡糖种类繁多,这些糖主要以糖脂或糖蛋白形式存在,具有很重要的生理功能。细胞与周围环境相互作用中(如细胞间识别,激素作用等等)几乎都涉及到糖脂和糖蛋白,它们也是膜抗原的重要组分。

流动性:流动性是细胞膜结构的基本特征,它既包括脂质,也包括膜蛋白的运动状态。

二、膜脂的流动性

在正常生理条件下,膜脂大多呈流动的液晶态。由纯磷脂形成的双分子人工膜,在温度降低至某一点时,它们可以从液晶态变为晶态(或称凝胶态)。这一温度称为相变温度。生物膜含有不止一种的脂质分子,它们具有各自的相变温度。在一定温度下,有的膜脂处于凝胶态,有的则呈流动的液晶态。流动与不流动的膜脂各自汇集的现象称为分相。

膜脂的运动一般可分为5种方式:①脂肪酸链的全反式构型旋转异构化运动;②脂肪酸链沿与双分子层相垂直的轴伸缩与摆动;③膜脂分子围绕与双分子平面相垂直的轴旋转;④膜脂分子的侧向扩散;⑤膜脂分子的翻转运动,这种运动速度远较上述四种要慢,半寿期大致为几小时至几天以上。

膜蛋白的运动:主要有两种方式:侧向扩散与旋转扩散。各种膜蛋白由于其本身及微环境的差异,它们的运动速度有很大的差异,一般讲,膜蛋白的侧向扩散比膜脂要慢得多,而大部分膜蛋白的旋转扩散则又慢于侧向扩散。

膜流动性与细胞膜功能密切有关,如:①细胞融合,②细胞间识别,③细胞表面受体的功能及其调节,④物质运送,⑤膜结合酶和酶系的活性等等。

影响细胞膜流动性的因素很多,除膜脂和膜蛋白本身的组分外,温度、pH、金属离子以及离子强度等都会对流动性产生影响。合适的流动性是膜蛋白(包括酶)呈现合适的构象,从而具有较高活性的重要条件。

L结构的分子模型:对于细胞膜的分子结构先后提出了几十种模型,影响较大的有两种。

丹尼利-戴维森模型:1935年提出,他们认为连续的脂质双分子层构成细胞膜的主体,脂质分子的疏水性的脂肪酸侧链面向中心,而极性基团则面向膜两侧水相。单层水化蛋白质分子覆盖脂质双分子层的两侧表面,从而形成蛋白质-脂质-蛋白质“三夹板”式的结构。

罗伯逊的单位膜模型:20世纪50年代末期罗伯逊应用电子显微镜观察到膜具有三层结构,即在两侧呈现厚度各为20埃、着色深的强嗜锇层;中间为厚35埃、着色浅的弱嗜锇层。他后来通过大量研究,进一步发现除细胞质膜外,其他如线粒体、叶绿体、内质网、高尔基器等膜样品在电子显微镜下也都能观察到厚度基本一致的三层结构,于是罗伯逊于1964年在丹尼利—戴维森模型的基础上进一步肯定了单位膜模型。与丹尼利-戴维森模型不同之点在于膜两侧分布的单层蛋白质分子以β—折叠形式与脂质分子的极性基团相结合,而且分布在两侧的蛋白质分子是不相同的。

后来发现大多数膜脂的分布并不全是连续的,膜蛋白主要不是β结构,以及大多数膜蛋白都需用剧烈的处理才能分离下来等等,这些都是单位膜模型难以解释的,于是又提出其他种种模型。

流体镶嵌模型:在膜脂的流动性和膜蛋白分布的不对称性等研究成果的基础上,1972年美国辛格与尼科尔森提出的模型,这个模型认为膜是由脂质和蛋白质分子按二维排列的流体。与过去提出的所有模型不同,流体镶嵌模型的特点首先在于膜的结构不是静止的,流态的脂质双分子层构成膜的连续体。其次,这个模型显示了膜蛋白分布的不对称性,有的镶在脂质双分子层表面,有的则部分或全部嵌入其内部,有的则横跨脂质双分子层。

板块镶嵌模型:有人发现流动性在膜的各部分并不是均匀的,如很多膜蛋白的周围含有一层比较专一的、相对不流动的脂质分子——界面脂。它可能对膜蛋白功能的表现和调控有重要作用。但也有人对界面脂的存在持怀疑或否定态度。

细胞膜含有很多种类的脂质分子,它们在一定温度下,有的处于晶态,有的则呈流动的液晶态。即使都处于液晶态,在一定温度下各种脂质分子的微粘度也不尽相同。细胞膜中蛋白质—脂质,蛋白质—蛋白质的相互作用以及pH,金属离子等都会不同程度影响并导致分子间的聚集而形成一定的区域(或称区块)结构。各个区块结构的组分和流动性是不相同的。基于上述情况1977年贾因与怀特又提出一种板块镶嵌模型。这种模型显示,整个细胞膜是具有不同流动性“板块”相间隔的动态结构。随着生理状态和环境条件的变化,这些“板块”结构的流动性甚至晶态和液晶态是可以变化的,因而细胞膜各部分的流动性也不断处于动态的变化之中。

三、功能

细胞膜具有多种功能,主要为物质运送,能量转换和信息传递。

物质运送:脂质双分子层是细胞膜结构的基本框架。按理,不带电荷的脂溶性物质容易通透,而带有电荷或极性基团的亲水物质则难以自由出入。但实际上一些水溶性小分子(如氨基酸,葡萄糖等)或离子能以很高速率穿越生物膜,而另一些则不能。换言之,通过细胞膜的运送过程具有高度选择性。这是由于在膜上含有专一的运送载体、运送体或运送酶系。根据运送过程自由能的变化情况,细胞膜的运送基本上可分为两大类:主动运送和被动运送。物质从浓度较大一侧通过膜运送到浓度较小的一侧,称为“被动运送”,它的速率依赖于膜两侧被运送物质的浓度差及其分子的大小、电荷性质等等。这是一个不需供给能量的自发过程。凡物质逆浓度梯度进行运送称为主动运送,在此过程中自由能是增加的,需要供给能量才能进行。

通过细胞膜的运送大多属于主动运送。主动运送,至少必须具有两个体系,一是参与运送的传递体,二是酶或酶系组成的能量供应体系。这二者偶联才能进行主动运送。

钾钠的主动运送——钾钠泵:多数细胞内部的Na+浓度比周围环境低,K+浓度比周围环境高。这种离子梯度的形成是主动运送的结果。这个运送体系称为钾钠泵。钾、钠泵本身即具有K+、Na+-ATP酶活性。它水解ATP所释放的能量即可驱动K+、Na+的主动运送。

钙的主动运送——钙泵大多数动物细胞内Ca2+浓度很低而细胞外则较高。要维持这样的浓度梯度,除内质网、线粒体外,位于细胞膜的Ca2+的主动运送体系或钙泵也参与调节作用。钙泵具有Ca2+激活ATP酶(Ca2+-ATP酶)活性,钙泵主动运送Ca2+是由ATP水解提供的能量来驱动的。

阴离子运送:阴离子运送通过膜也需一定的载体,例如,红细胞膜的带3蛋白就是一种运送阴离子(Cl—,S2—等)的载体。带3蛋白运送阴离子的过程是一个不需能的自发过程。

内吞与外排:大分子物质通过细胞膜的另外一种方式(见内吞与外排)。这种过程和其他主动运送一样也需要供应能量,如果氧化磷酸化作用被抑制,内吞或外排过程也就不能进行。

能量转换:真核细胞的能量转换过程主要在线粒体;叶绿体中进行。有些原核细胞的能量转换过程可在细胞质膜上进行,如大肠杆菌的细胞质膜也分布有氧化磷酸化酶系,通过氧化进行能量转换。

信息传递:全过程包括信息分子的产生,识别,接受和传递。细胞表面在信息传递过程中起着中间媒介作用。细胞间识别、细胞免疫、神经传导、激素作用、毒素作用都牵涉到细胞表面的信息传递功能。

细胞壁

细胞外围的厚壁。是植物细胞特有的结构,具有保护和支持作用,并与植物细胞的吸收,蒸腾和物质的运输有关。

细胞壁分为3层,即胞间层(中层)、初生壁和次生壁。胞间层把相邻细胞粘在一起形成组织。初生壁在胞间层两侧,所有植物细胞都有。次生壁在初生壁的里面,又分为外层、中层、内层3层,在内层里面,有时还可出现一层。这样的厚壁,水分和营养物就不能透过。有些植物的次生壁上具瘤层,还分化有特殊结构,如纹孔和瘤状物等。纹孔是细胞间物质流通的区域,而瘤状物则是次生壁里层上的突起。

新细胞壁的形成是在细胞分裂末期的赤道面上,分裂的母细胞先形成成膜体。在染色体分向两极时,高尔基器分离出的小泡与微管集合在赤道面上成为细胞板。新的多糖物质沉积在细胞板上就逐渐形成胞间层。其后细胞内合成一些纤维素组成微纤丝沉积在胞间层的两侧,就出现了初生壁。当细胞成熟停止生长以后,一层层新的纤维素和半纤维素以及木质素陆续添加在初生壁上,就建成了次生壁。初生壁每添加一层,微纤维排列的方向就可不同(纵向或横向),形成了不规则的交错网状,称为多网生长。这样加厚的结果,使整个植物体的机械支持有了基础。

有人认为细胞壁发生的步骤有三:①在由高尔基器所产生的小泡中形成前体(壁的结构单位),随着膜流的方向,逐步推进到细胞表面,经外排作用,放出前体;②放出的前体结合到一定的网状物上;③在稠密的细胞壁上出现化学变化,转换、变松和生长等现象,建成了细胞壁。

细胞壁的化学组成:胞间层基本上是由果胶质组成,如果植物组织中的果胶质用果胶酶分解掉,细胞就会离散。初生壁是由水、半纤维素、果胶质、纤维素、蛋白质和脂类组成。胚芽鞘、茎、叶、毛等初生壁的各种成分的平均值见表初生壁的化学成分。

次生壁的主要成分也是半纤维素和纤维素,果胶质很少。其后木质素沉积在其上,开始不同程度的木质化。有些植物的茎、叶的表皮细胞壁分别出现有角质化、蜡质化和木栓化,其中含有角质、蜡质和木栓质,都是由脂肪酸组成的高度聚合的化合物,这些富于脂肪性物质的细胞壁,水分和气体都不能透过,可以很好地防止水分蒸腾,阻止不良气体和寄生物入侵植物体内。在禾本科植物的茎秆表皮细胞壁含有硅,也有保护作用。

上述这些化学组成在生长与发育过程中是不断改变的。例如在刚出现的初生壁只有一些稀疏的微纤维附着在细胞板上,随着生长继续进行,纤维素的含量增加,而果胶质的合成则下降,次生壁在最幼年的形成层细胞,刚成熟的边材和在树杆中央的心材三者之间比较,果胶质含量比较恒定,但数量很少。半纤维素,纤维素和木质素的含量增加很大。如在槭树中木质素在边材中的含量比形成层细胞多90倍。