(本试卷满分120分,考试时间120分钟)
第Ⅰ卷(选择题共32分)
一、选择题(本大题共8小题,每小题4分,共32分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.-34的绝对值是()
A.-43
B.43
C.-34
D.34
2.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665575306人。将665575306用科学记数法表示(保留三个有效数字)约为()
A.66.6×107
B.0.666×108
C.6.66×108
D.6.66×107
3.下列图形中,既是中心对称图形又是轴对称图形的是()
A.等边三角形
B.平行四边形
C.梯形
D.矩形
4.在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则AO[]CO的值为()
A.12
B.13
C.14
D.19
5.北京市今年6月某日部分区县的最高气温:则这10个区县该日最高气温的众数和中位数分别是()
A.32,32
B.32,30
C.30,32
D.32,31
6.一个不透明的盒子中装有2个白球、5个红球和8个黄球,这些球除颜色外,没有任何其他区别。现从这个盒子中随机摸出一个球,摸到红球的概率为()
A.815
B.13
C.215
D.115
7.抛物线y=x?-6x+5的顶点坐标为()
A.(3,-4)
B.(3,4)
C.(-3,-4)
D.(-3,4)
第Ⅱ卷(非选择题共88分)
二、填空题(本大题共4小题,每小题4分,共16分。请把答案填在题中横线上)
9.若分式x-8x的值为0,则x的值等于__________。
10.分解因式:a?-10a?+25a=_________。
11.若下图是某几何体的表面展开图,则这个几何体是__________。
12.在下表中,我们把第i行第j列的数记为ai,j(其中i,j都是不大于5的正整数),对于表中的每个数ai,j规定如下:
当i≥j时,ai,j=1;
当i 按此规定,a1,3=__________;表中的25个数中,共有个1;计算
a1,1·ai,1+
a1,2·ai,2+
a1,3·ai,3+
a1,4·ai,4+
a1,5·ai,5的值为________。
a1,1a1,2a1,3a1,4a1,5
a2,1a2,2a2,3a2,4a2,5
a3,1a3,2a3,3a3,4a3,5
a4,1a4,2a4,3a4,4a4,5
a5,1a5,2a5,3a5,4a5,5
三、解答题(本大题共13小题,共72分。解答应写出必要的文字说明、证明过程或演算步骤)
13.(本小题满分5分)
计算:1?-1-2cos30°+27+(2-π)?.
14.(本小题满分5分)
解不等式:4(x-1)>;5x-6.
15.(本小题满分5分)
已知a?+2ab+b?=0,求代数式a(a+4b)-(a+2b)(a-2b)的值。
16.(本小题满分5分)
点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD。
求证:AE=FC。
17.(本小题满分5分)
在平面直角坐标系xOy中,一次函数y=-2x的图象与反比例函数y=kx的图象的一个交点为A(-1,n)。
(1)求反比例函数y=kx的解析式;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标。
18.(本小题满分5分)
列方程或方程组解应用题:
京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车。已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37。小王用自驾车方式上班平均每小时行驶多少千米?
19.(本小题满分5分)
在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD。
若AC=2,CE=4,求四边形ACEB的周长。
20.(本小题满分5分)
在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC的延长线上,且∠CBF=12∠CAB。
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=55,求BC和BF的长。
21.(本小题满分5分)
以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制的统计图的一部分。
请你根据以上信息解答下列问题:
(1)2008年北京市私人轿车拥有量是多少万辆(结果保留三个有效数字)?
(2)补全条形统计图;
(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量。为了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关。如:一辆排量为16L的轿车,如果一年行驶1万千米,这一年,它的碳排放量约为27吨。于是他调查了他所居住小区的150辆私人轿车,如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为16L的这类私人轿车(假设每辆车平均一年行驶1万千米)的碳排放总量约为多少万吨?
22.(本小题满分5分)
阅读下面材料:
小伟遇到这样一个问题:在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O。若梯形ABCD的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积。
小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可。他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题。他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形。
请你回答:参考小伟同学思考问题的方法,解决下列问题:
(1)利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于。
23.(本小题满分7分)
在平面直角坐标系xOy中,二次函数y=mx?+(m-3)x-3(m>;0)的图象与x轴交于A,B两点(点A在点B左侧),与y轴交于点C。
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点。在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx?+(m-3)x-3(m>;0)的图象于点N。
24.(本小题满分7分)
在ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。
(1)证明CE=CF;
(2)若∠ABC=90°,G是EF的中点,直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG,求∠BDG的度数。
25.(本小题满分8分)
在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C。已知A(-1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上。
(1)求两条射线AE,BF所在直线的距离;
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;
当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;
(3)已知AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围。