书城公版Metaphysics
36833200000109

第109章

Those who treat the unequal as one thing, and the dyad as an indefinite compound of great and small, say what is very far from being probable or possible. For (a) these are modifications and accidents, rather than substrata, of numbers and magnitudes-the many and few of number, and the great and small of magnitude-like even and odd, smooth and rough, straight and curved. Again, (b) apart from this mistake, the great and the small, and so on, must be relative to something; but what is relative is least of all things a kind of entity or substance, and is posterior to quality and quantity;and the relative is an accident of quantity, as was said, not its matter, since something with a distinct nature of its own must serve as matter both to the relative in general and to its parts and kinds. For there is nothing either great or small, many or few, or, in general, relative to something else, which without having a nature of its own is many or few, great or small, or relative to something else. A sign that the relative is least of all a substance and a real thing is the fact that it alone has no proper generation or destruction or movement, as in respect of quantity there is increase and diminution, in respect of quality alteration, in respect of place locomotion, in respect of substance simple generation and destruction. In respect of relation there is no proper change; for, without changing, a thing will be now greater and now less or equal, if that with which it is compared has changed in quantity. And (c) the matter of each thing, and therefore of substance, must be that which is potentially of the nature in question; but the relative is neither potentially nor actually substance. It is strange, then, or rather impossible, to make not-substance an element in, and prior to, substance; for all the categories are posterior to substance.

Again, (d) elements are not predicated of the things of which they are elements, but many and few are predicated both apart and together of number, and long and short of the line, and both broad and narrow apply to the plane. If there is a plurality, then, of which the one term, viz. few, is always predicated, e.g. 2 (which cannot be many, for if it were many, 1 would be few), there must be also one which is absolutely many, e.g. 10 is many (if there is no number which is greater than 10), or 10,000. How then, in view of this, can number consist of few and many? Either both ought to be predicated of it, or neither; but in fact only the one or the other is predicated.

2

We must inquire generally, whether eternal things can consist of elements. If they do, they will have matter; for everything that consists of elements is composite. Since, then, even if a thing exists for ever, out of that of which it consists it would necessarily also, if it had come into being, have come into being, and since everything comes to be what it comes to be out of that which is it potentially (for it could not have come to be out of that which had not this capacity, nor could it consist of such elements), and since the potential can be either actual or not,-this being so, however everlasting number or anything else that has matter is, it must be capable of not existing, just as that which is any number of years old is as capable of not existing as that which is a day old; if this is capable of not existing, so is that which has lasted for a time so long that it has no limit. They cannot, then, be eternal, since that which is capable of not existing is not eternal, as we had occasion to show in another context. If that which we are now saying is true universally-that no substance is eternal unless it is actuality-and if the elements are matter that underlies substance, no eternal substance can have elements present in it, of which it consists.

There are some who describe the element which acts with the One as an indefinite dyad, and object to 'the unequal', reasonably enough, because of the ensuing difficulties; but they have got rid only of those objections which inevitably arise from the treatment of the unequal, i.e. the relative, as an element; those which arise apart from this opinion must confront even these thinkers, whether it is ideal number, or mathematical, that they construct out of those elements.

There are many causes which led them off into these explanations, and especially the fact that they framed the difficulty in an obsolete form. For they thought that all things that are would be one (viz. Being itself), if one did not join issue with and refute the saying of Parmenides:

'For never will this he proved, that things that are not are.'

They thought it necessary to prove that that which is not is;for only thus-of that which is and something else-could the things that are be composed, if they are many.

But, first, if 'being' has many senses (for it means sometimes substance, sometimes that it is of a certain quality, sometimes that it is of a certain quantity, and at other times the other categories), what sort of 'one', then, are all the things that are, if non-being is to be supposed not to be? Is it the substances that are one, or the affections and similarly the other categories as well, or all together-so that the 'this' and the 'such' and the 'so much' and the other categories that indicate each some one class of being will all be one? But it is strange, or rather impossible, that the coming into play of a single thing should bring it about that part of that which is is a 'this', part a 'such', part a 'so much', part a 'here'.