Since there is room only for a few larvae in the uterus, a large number of eggs perish and this number is the greater the longer the period of gestation. It thus happens that when the animals retain their eggs a long time, very few young ones are born; and these are in a rather advanced stage of development, owing to the long time which elapsed since they were fertilised. When the animal lays its eggs comparatively soon after copulation, many eggs (from 12 to 72) are produced and the larvae are of course in an early stage of development. In the early stage the larvae possess gills and can therefore live in water, while in later stages they have no gills and breathe through their lungs. Kammerer showed that both forms of Salamandra can be induced to lay their eggs early or late, according to the physical conditions surrounding them. If they are kept in water or in proximity to water and in a moist atmosphere they have a tendency to lay their eggs earlier and a comparatively high temperature enhances the tendency to shorten the period of gestation. If the salamanders are kept in comparative dryness they show a tendency to lay their eggs rather late and a low temperature enhances this tendency.
Since Salamandra atra is found in rather dry alpine regions with a relatively low temperature and Salamandra maculosa in lower regions with plenty of water and a higher temperature, the fact that S. atra bears young which are already developed and beyond the stage of aquatic life, while S. maculosa bears young ones in an earlier stage, has been termed adaptation.
Kammerer's experiments, however, show that we are dealing with the direct effects of definite outside forces. While we may speak of adaptation when all or some of the variables which determine a reaction are unknown, it is obviously in the interest of further scientific progress to connect cause and effect directly whenever our knowledge allows us to do so.
VII. CONCLUDING REMARKS.
The discovery of De Vries, that new species may arise by mutation and the wide if not universal applicability of Mendel's Law to phenomena of heredity, as shown especially by Bateson and his pupils, must, for the time being, if not permanently, serve as a basis for theories of evolution.
These discoveries place before the experimental biologist the definite task of producing mutations by physico-chemical means. It is true that certain authors claim to have succeeded in this, but the writer wishes to apologise to these authors for his inability to convince himself of the validity of their claims at the present moment. He thinks that only continued breeding of these apparent mutants through several generations can afford convincing evidence that we are here dealing with mutants rather than with merely pathological variations.
What was said in regard to the production of new species by physico-chemical means may be repeated with still more justification in regard to the second problem of transformation, namely the ****** of living from inanimate matter. The purely morphological imitations of bacteria or cells which physicists have now and then proclaimed as artificially produced living beings; or the plays on words by which, e.g. the regeneration of broken crystals and the regeneration of lost limbs by a crustacean were declared identical, will not appeal to the biologist. We know that growth and development in animals and plants are determined by definite although complicated series of catenary chemical reactions, which result in the synthesis of a DEFINITE compound or group of compounds, namely, NUCLEINS.
The nucleins have the peculiarity of acting as ferments or enzymes for their own synthesis. Thus a given type of nucleus will continue to synthesise other nuclein of its own kind. This determines the continuity of a species; since each species has, probably, its own specific nuclein or nuclear material. But it also shows us that whoever claims to have succeeded in ****** living matter from inanimate will have to prove that he has succeeded in producing nuclein material which acts as a ferment for its own synthesis and thus reproduces itself. Nobody has thus far succeeded in this, although nothing warrants us in taking it for granted that this task is beyond the power of science.