书城公版Darwin and Modern Science
34905600000129

第129章

(Klebs, "Willkurliche Aenderungen", etc. Jena, 1903, page 130.)Theoretically, however, experiments are of greater importance in which the production of flowers is inhibited by very favourable conditions of nutrition (Klebs, "Ueber kunstliche Metamorphosen", Stuttgart, 1906, page 115 ("Abh. Naturf. Ges. Halle", XXV.) occurring at the normal flowering period. Even in the case of plants of Sempervivum several years old, which, as is shown by control experiments on precisely similar plants, are on the point of flowering, flowering is rendered impossible if they are forced to very vigorous growth by an abundant supply of water and salts in the spring. Flowering, however, occurs, if such plants are cultivated in relatively dry sandy soil and in the presence of strong light. Careful researches into the conditions of growth have led, in the cases Sempervivum, to the following results: (1) With a strong light and vigorous carbon-assimilation a considerably increased supply of water and nutritive salts produces active vegetative growth. (2) With a vigorous carbon-assimilation in strong light, and a decrease in the supply of water and salts active flower-production is induced. (3) If an average supply of water and salts is given both processes are possible; the intensity of carbon-assimilation determines which of the two is manifested. Adiminution in the production of organic substances, particularly of carbohydrates, induces vegetative growth. This can be effected by culture in feeble light or in light deprived of the yellow-red rays: on the other hand, flower-production follows an increase in light-intensity. These results are essentially in agreement with well-known observations on cultivated plants, according to which, the application of much moisture, after a plentiful supply of manure composed of inorganic salts, hinders the flower-production of many vegetables, while a decrease in the supply of water and salts favours flowering. ii. INFLUENCE OF THE ENVIRONMENT ON THE FORM OF SINGLE ORGANS. (Aconsiderable number of observations bearing on this question are given by Goebel in his "Experimentelle Morphologie der Pflanzen", Leipzig, 1908. It is not possible to deal here with the alteration in anatomical structure;cf. Kuster, "Pathologische Pflanzenanatomie", Jena, 1903.)If we look closely into the development of a flowering plant, we notice that in a given species differently formed organs occur in definite positions. In a potato plant colourless runners are formed from the base of the main stem which grow underground and produce tubers at their tips: from a higher level foliage shoots arise nearer the apex. External appearances suggest that both the place of origin and the form of these organs were predetermined in the egg-cell or in the tuber. But it was shown experimentally by the well-known investigator Knight (Knight, "Selection from the Physiological and Horticultural Papers", London, 1841.)that tubers may be developed on the aerial stem in place of foliage shoots.

These observations were considerably extended by Vochting. (Vochting, "Ueber die Bildung der Knollen", Cassel, 1887; see also "Bot. Zeit." 1902, 87.) In one kind of potato, germinating tubers were induced to form foliage shoots under the influence of a higher temperature; at a lower temperature they formed tuber-bearing shoots. Many other examples of the conversion of foliage-shoots into runners and rhizomes, or vice versa, have been described by Goebel and others. As in the asexual reproduction of algae quantitative alteration in the amount of moisture, light, temperature, etc. determines whether this or that form of shoot is produced. If the primordia of these organs are exposed to altered conditions of nutrition at a sufficiently early stage a complete substitution of one organ for another is effected. If the rudiment has reached a certain stage in development before it is exposed to these influences, extraordinary intermediate forms are obtained, bearing the characters of both organs.

The study of regeneration following injury is of greater importance as regards the problem of the development and place of origin of organs.

(Reference may be made to the full summary of results given by Goebel in his "Experimentelle Morphologie", Leipzig and Berlin, 1908, Section IV.)Only in relatively very rare cases is there a complete re-formation of the injured organ itself, as e.g. in the growing-apex. Much more commonly injury leads to the development of complementary formations, it may be the rejuvenescence of a hitherto dormant rudiment, or it may be the formation of such ab initio. In all organs, stems, roots, leaves, as well as inflorescences, this kind of regeneration, which occurs in a great variety of ways according to the species, may be observed on detached pieces of the plant. Cases are also known, such, for example, as the leaves of many plants which readily form roots but not shoots, where a complete regeneration does not occur.