The utmost that can be said for primitiveness of character in Palaeozoic Lycopods is that the anatomy of the stem, in its primary ground-plan, as distinguished from its secondary growth, was ******r than that of most Lycopodiums and Selaginellas at the present day. There are also some peculiarities in the underground organs (Stigmaria) which suggest the possibility of a somewhat imperfect differentiation between root and stem, but precisely parallel difficulties are met with in the case of the living Selaginellas, and in some degree in species of Lycopodium.
In spite of their high development in past ages the Lycopods, recent and fossil, constitute, on the whole, a homogeneous group, and there is little at present to connect them with other phyla. Anatomically some relation to the Sphenophylls is indicated, and perhaps the recent Psilotaceae give some support to this connection, for while their nearest alliance appears to be with the Sphenophylls, they approach the Lycopods in anatomy, habit, and mode of branching.
The typically microphyllous character of the Lycopods, and the ****** relation between sporangium and sporophyll which obtains throughout the class, have led various botanists to regard them as the most primitive phylum of the Vascular Cryptogams. There is nothing in the fossil record to disprove this view, but neither is there anything to support it, for this class so far as we know is no more ancient than the megaphyllous Cryptogams, and its earliest representatives show no special simplicity.
If the indications of affinity with Sphenophylls are of any value the Lycopods are open to suspicion of reduction from a megaphyllous ancestry, but there is no direct palaeontological evidence for such a history.
The general conclusions to which we are led by a consideration of the fossil record of the Vascular Cryptogams are still very hypothetical, but may be provisionally stated as follows:
The Ferns go back to the earliest known period. In Mesozoic times practically all the existing families had appeared; in the Palaeozoic the class was less extensive than formerly believed, a majority of the supposed Ferns of that age having proved to be seed-bearing plants. The oldest authentic representatives of the Ferns were megaphyllous plants, broadly speaking, of the same type as those of later epochs, though differing much in detail. As far back as the record extends they show no sign of becoming merged with other phyla in any synthetic group.
The Equisetales likewise have a long history, and manifestly attained their greatest development in Palaeozoic times. Their oldest forms show an approach to the extinct class Sphenophyllales, which connects them to some extent, by anatomical characters, with the Lycopods. At the same time the oldest Equisetales show a somewhat megaphyllous character, which was more marked in the Devonian Pseudoborniales. Some remote affinity with the Ferns (which has also been upheld on other grounds) may thus be indicated.
It is possible that in the Sphenophyllales we may have the much-modified representatives of a very ancient synthetic group.
The Lycopods likewise attained their maximum in the Palaeozoic, and show, on the whole, a greater elaboration of structure in their early forms than at any later period, while at the same time maintaining a considerable degree of uniformity in morphological characters throughout their history.
The Sphenophyllales are the only other class with which they show any relation; if such a connection existed, the common point of origin must lie exceedingly far back.
The fossil record, as at present known, cannot, in the nature of things, throw any direct light on what is perhaps the most disputed question in the morphology of plants--the origin of the alternating generations of the higher Cryptogams and the Spermophyta. At the earliest period to which terrestrial plants have been traced back all the groups of Vascular Cryptogams were in a highly advanced stage of evolution, while innumerable Seed-plants--presumably the descendants of Cryptogamic ancestors--were already flourishing. On the other hand we know practically nothing of Palaeozoic Bryophyta, and the evidence even for their existence at that period cannot be termed conclusive. While there are thus no palaeontological grounds for the hypothesis that the Vascular plants came of a Bryophytic stock, the question of their actual origin remains unsolved.
III. NATURAL SELECTION.
Hitherto we have considered the palaeontological record of plants in relation to Evolution. The question remains, whether the record throws any light on the theory of which Darwin and Wallace were the authors--that of Natural Selection. The subject is clearly one which must be investigated by other methods than those of the palaeontologist; still there are certain important points involved, on which the palaeontological record appears to bear.
One of these points is the supposed distinction between morphological and adaptive characters, on which Nageli, in particular, laid so much stress.
The question is a difficult one; it was discussed by Darwin ("Origin of Species" (6th edition), pages 170-176.), who, while showing that the apparent distinction is in part to be explained by our imperfect knowledge of function, recognised the existence of important morphological characters which are not adaptations. The following passage expresses his conclusion.