书城童书科普知识百科全书——《能源知识篇》(上)
34723200000018

第18章 开源节流(1)

不烧汽油的电动汽车能风驰于世

近百年来,人们所见所用差不多都是用汽油或柴油作燃料的汽车、坦克、拖拉机、摩托车,真正能见到用蓄电池驱动的汽车,也就是工厂内、车站上运送货物的“电瓶车”,可为了开辟节能新途径,电动汽车却又要悄然复出,重新崛起。

用电力代替汽油燃料,最重要的是要有高能蓄电池,这项技术一直是电动汽车发展进程中的关键问题。国外对于大功率电池组的发展越来越重视,用这种能源替代化石燃料生成电能,具有重大意义,既可摆脱依赖石油作能源的困惑,又可减少环境污染,因而被视为重要出路之一。近些年来,许多国家都在抓紧研究开发这一高技术产品。最近,德国终于开发出了高人一筹的“钠-硫高能蓄电池”。这种电池是利用钠(作负极)和硫(作正极)的电化学系统,加上β—氧化铝的特殊材料构成,并采用能传导钠离子的固体陶瓷作电解质,大大提高了能量密度,最佳能量—重量比为120瓦小时/公斤,每克钠可产生117安培的电流。这种电池充8小时电后,使用2小时再测量时,蓄电容量仍有90%。也可用90分钟甚至60分钟快速充电,总寿命为1000次充放电,可保证行驶15万公里。其体积比铅电池减少一半,重量减少75%。经70辆轿车运行试验表明,最高时速可达120公里,从静态到时速50公里,只需7秒钟,每百公里耗电量平均为25千瓦时,电费5马克,而烧油汽车则需12马克。这种电池唯一不同于传统铅电池的特殊使用要求是:要在300℃~400℃下才能进行化学反应,但德国科学家已利用电子温度控制技术使温度问题得到解决。

德国RWE电力公司1991年还与英国一家公司在曼彻斯特市联合修建了一座生产钠—硫蓄电池工厂,并决定动员把“大众—高尔夫”牌75辆小轿车,改装成电动汽车,进行试验。

日本在研究高效蓄电技术方面发展也很快,和德国的进展速度不相上下。1992年1月东京电力公司宣布,他们从1991年10月开始对100千瓦级钠—硫电池进行系统化试验结果表明,这种电池充放电效率达到90%~91%的世界最高水平。这个高效大容量蓄电装置安装在川崎市变电所内,有6750个电池组成,每充电4小时,达到440千瓦时,放电可达400千瓦时。这项试验产品小型化后,就可为电动汽车提供高效动力系统。

日本国际超导产业技术研究中心1991年也开始研制小型超导蓄电装置。这种装置是利用在超低温条件下电阻为零的线圈进行蓄电。这种线圈是由多根铌钛合金线材集匝成束,并用铜材包裹。线圈直径3米,采用复曲面方式将其多重缠绕成直径约8米的圆形。专家们认为,这种超导线圈蓄电技术一旦成功,用作小型化的蓄电技术供电动汽车使用,无疑也是大有希望的途径之一。

目前,除德国、日本外,美国、加拿大、英国、瑞典等许多工业先进国家都在积极研制高能蓄电池。除钠—硫蓄电池外,还有锂、镍—镉、锌—溴、镍—铁、锌—氧等多种类型蓄电池,以抢占世界电动汽车市场。有的国家还开始使用燃料电池作为电动汽车的能源,目前也在试验中。

蓄电高技术的进展,大大促进了电动汽车的崛起。这项高技术对解决化石燃料危机和保护生态环境以及对整个工业生产、国防建设都将起到重大促进作用。因此,可以指望到90年代中期,将有大批不烧汽油的汽车奔驶于公路、市区。美国福特汽车公司计划1993年组建一支由80辆“生态之星”的电动面包车构成的车队,奔驰在美国和欧洲的公路上。

水煤溶合的液体燃料应运而生

烧油和烧煤的两个耗能大户是火力发电站锅炉和工业锅炉。

要节能,就要从这两个大户开始。能源专家们又开发出一种新兴的液体燃料——水煤浆燃料。

第二次世界大战结束以后,随着经济发展,耗能量剧增,许多国家开始研究节省石油消费的途径。很快开发出来一种“煤—油混合燃料”(英文编写为“COM”),这是一种用重油和煤粉混合而成的液体,烧油锅炉不必动大手术改造就可以使用它,它可以代油30%~40%。美国首先起步,将一座电厂的12万千瓦级发电机组改烧“COM”。随后有几十个国家都相随开展过这项新技术的研究工作;日本还专门成立了“COM”燃料公司;我国一些大学、发电厂也在电站锅炉上进行过工业性实验,虽然都取得了一定成效,但从根本上说,这种“COM”技术仍没有脱离对石油的依赖,代油量不大,效益不高,发展推广受到很大限制。

到70年代末,能源专家们在“煤油混合”原理的启发下,开始研究“水—煤混合技术”,很快就制成了高浓度的代油燃料—水煤浆,即“CWM”。“O”、“W”,一字之差,就宣判了“煤—油燃料”的死刑,同时,也宣告了“煤—水混合燃料”的诞生。

所谓“水煤浆”,就是用70%~75%的煤粉和25%~30%的水,再加入02%~5%微量的添加剂混合而成的一种液体燃料。

它是彻底不用石油的煤炭液化燃料,它将水掺入煤粉中参与燃烧。

由于水中含有氢,虽起到一定的助燃作用,但也会使锅炉效率降低。可是从总体上计算,水煤浆在获取同样热量的情况下,要大大节省煤炭,热值提高很多。例如,煤炭直接燃料的利用率仅为28%左右;而近年德国研究的新一代煤炭高压加氢液化工艺,每天处理煤200吨,产轻油30吨,中油70吨,液化气20吨,煤炭转化率竟高达94%。另外,它的温室效应物质,特别是煤灰尘排放量大量减少,又可像石油一样运输和贮存,因而很受欢迎,国外有人把它誉为“6号重油”。这种新兴燃料的使用不失为一条可取的节能之路。

据考证,煤的液化技术早在20世纪20~30年代就开始发展了。在第二次世界大战期间,德国人就曾使用液化煤代替石油用作军车燃料。战后和平时期,石油市场占了上风。但南非国家依然发展液化煤,1959年建成了第一家商业化液化煤工厂,且产量一直稳步上升,到80年代后期,其全国汽车燃料消耗量的一半,是液化煤。不过,这些都是旧技术,液化效率很低。

近10多年来,一些工业先进国家发展了水煤浆加压气化技术,把水—煤混合燃料提高到一个新水平。美国、日本和德国发展最快,从1975年到1987年间先后建立了3套中试装置、3套工业示范装置和5套商业化装置,其中美、日各一套商业化装置已稳定运行6年以上。这些装置一般每天可处理200~600吨煤,取得很好的效果。法国、奥地利、澳大利亚、英国等国也在积极开发中。

我国自1981年开始也进行了水煤浆的开发研究工作,在添加剂筛选上已获得可喜成果,使水煤浆的浓度已达75%,稳定性也很好,保证一个半月静置中不沉淀,经1500公里长途运输后仍可直接燃烧。1986年1月,作为我国“六五”科技攻关项目通过了国家鉴定,表明水煤浆制备和燃烧技术已达到先进水平。北京造纸一厂作为第一个试用工业应用单位,经两年5次试验证明,经济效益明显。据调查,1986年时,该厂所用燃料油每吨为280元,而水煤浆每吨只需120元,18吨水煤浆就可顶替1吨杂油。一年要耗杂油22万吨,如改烧水煤浆,每年可节约燃料费103万元。

从煤炭质量来看,我国本来适于作水煤浆的高硫烟煤和褐煤很多,这些煤液化后,含硫高,往往起到对液化的反应催化作用,成为液化的良好原料。近几年又发现了陕西神木、黄陵、铜川一带的“黑金带”和“黑金三角”地区蕴藏着大量优质煤,更可为发展水煤浆提供重要原料。我国现有设计烧油的发电机组约7000万千瓦,年烧油量约1100万吨,约占我国年产油量的10%左右。如果全国能将80%的烧油锅炉用水煤浆把油顶替出来,每年可为国家换取外汇15亿美元,其经济效益是十分可观的。

从世界看,从我国看,水煤浆技术的开发,虽仍处于中试阶段,但只要抓紧技术攻关,水煤浆在世界能源结构中必将获得一席之地。

现代热电联产技术悄然兴起

早在100年前,美国纽约市建立了世界上第一个热电联产企业,这家企业一直经营到今天。当时的“联产企业”仅限于热能和电能的联合生产。但近15年来,随着高科技的进步,能源消费剧增,已把“热电联产”的概念发展为泛指任何两种或两种以上能源物质同时生产的“现代联产技术”了——包括同时生产热水、蒸汽、冷气、电能、机械能、空调能源等等。现代联产技术的发展,对节约能源,保证和改善生态环境有着重要的意义,是节能的重要途径之一。

节约能源从根本上说,就是减少能源消耗和提高能源利用效率两个方面。常为人们忽视的是在能源利用过程中,对所谓“废热”或称“余热”的利用问题。