书城童书《海洋知识篇》(上)
34220600000003

第3章 历史悠久的海洋文明(3)

那些经历了中生代后期行星大碰撞生存下来的生物开始复苏,随着新生代的推移,新的世界秩序开始形成。陆地上,植物开始生长,将大地变成一片绿色。气候温暖而湿润;热带森林从赤道延伸到中纬度地区,林地出现在两极地区。没有了食草恐龙的觅食,植被生长繁茂。在大爆炸中生存下来的小型哺乳动物在大陆上扩张,种类多样化起来,不断填补着恐龙留下的空缺。随着哺乳动物形体的增大,它们能适应更特殊的环境,进入新的栖息环境,例如海狮、海豹和海象能够在水中嬉戏玩耍。随后,鲸鱼和海豚出现在海洋中。

早期的鲸鱼是一些有齿的种类,同海豚、逆戟鲸(OR-CAS)和抹香鲸一样。与它们在陆地上的哺乳动物同类们不同的是:鲸鱼没有毛发或毛皮,而是代之以光滑的皮肤,这有助于它们在水中游动。鲸鱼进化出厚厚的皮下脂肪层,使它们在冷水中也能保持温暖;在陆地上用于行走的四肢消失或转变成了桨状物;外鼻孔从头部前端移到头骨的顶端或后部,成为呼吸的通道。鲸鱼拥有巨大的有弹性、可折叠的肺,有利于它们的深海潜泳;它们的耳朵变得对水下的声音和震动敏感,这使鲸鱼和海豚进化出回声定位的本领。后来,海洋中出现了须鲸类,如露脊鲸和巨大的蓝鲸,它们有着带绒毛的颚或鲸须,使它们能从海水中过滤出大量的虾、浮游类和小鱼。

鲸鱼的祖先是一个多年来争论的问题。虽然,我们知道鲸鱼是从陆地的四足哺乳动物进化而来的,但是,我们并不知道是哪种动物进化成了鲸鱼,也无法明白为什么这种动物要放弃陆地而重返海洋。根据牙齿的惊人相似性,一些古生物学家认为,鲸鱼是一种像狼的哺乳动物进化来的。另一方面,科学家利用DNA分析,认为鲸鱼是从一组动物进化而来的,这些动物包括河马、骆驼和猪。最近,在巴基斯坦发现了大约5000万年前的鲸鱼骨骼化石,但这一发现并没有解决进化上的争论,反而加深了谜团,因为这些化石并不支持上述任何一种理论,这个谜至今尚未揭开。

在新生代,海洋哺乳动物之所以能成功地占领海洋,是因为海洋中有大量的食物资源。

中生代的幸存者因为竞争对手的灭绝而在海洋中大量繁殖。光合浮游生物,如硅藻、腰鞭毛虫、颗石鞭毛藻等快速繁殖起来,随后带动了食草类、滤食类和食腐动物的繁荣。海洋中并没有新的种群出现,但甲壳类、放射虫类、贝类、珊瑚、苔藓虫类、海胆、海星和有孔虫类大量繁殖。一种大型的硬币状的有孔虫的繁殖数量如此之多,以至于它们的碳酸钙外壳在海底累积,形成了厚厚的沉积层。年复一年,富含有孔虫外壳的沉积层硬化形成石灰岩,并在一次重要的造山运动中冲出了地面。后来,古埃及人认识到了这种富含有孔虫外壳的石灰岩的美丽和实用性,就将它们开采出来,用以建造金字塔和神秘的狮身人面像。

新生代时期,腕足类动物的数量下降,只有有限的物种经受住了时间的考验。相反,软体动物则在新生代的海洋中繁盛起来,成为地球上数量最多、种类最具多样性的生物之一。

随着软体动物的多样化,它们形成了许多美丽、精致、色彩鲜艳的贝壳。扇贝、蚌、牡蛎、蜗牛、乌贼、章鱼和贻贝开始了对海洋微妙的统治。这时,珊瑚再次成为礁石的主要制造者,而苔藓虫虽然还有,但退居次席。海底海百合的领地消失了,海百合退隐成为一种有点隐秘的存在于海底的角落和缝隙中的一种生物。硬骨鱼类的数量暴增,以前所未有之势遍布海洋。鲈鱼、笛鲷、海马、旗鱼、鳋、剑鱼、金枪鱼和各种各样的鱼类数量众多。软骨鱼类,如鲨鱼和鳐同样繁盛。已经发现了大如人类手掌的鲨鱼牙齿,经测年证明来自于新生代早期。根据牙齿的庞大尺寸,科学家估计这种叫做Carcharodon megaloden的鲨鱼能长到12米长(39英尺),大小是它的现代种类——大白鲨的两倍。海龟、鳄鱼和海鸟也出现在早期的新生代海洋中。

但不久后,地球的环境再次发生改变。巨大的造山运动开始出现,并发生了一系列导致地球长期寒冷的事件。北美板块向西飘移,与太平洋板块相撞,使得北美大陆的边缘受到挤压而抬升,曾经位于海底的沉积物上升、堆积而形成了落基山脉。印度板块慢慢地挤进亚洲大陆,形成了高大的喜马拉雅山脉。在这里,印度板块和亚洲板块的碰撞范围绵延2900公里,高山抬升到海平面上8854米处。喜马拉雅山成为陆地上的世界第一高山,而且,由于板块的汇聚还在继续,喜马拉雅山将仍以每年1厘米的速率抬升。阿尔卑斯山和比利牛斯山也形成于新生代早期。曾经位于海底的生物和沉积物抬升形成了山峰和沟谷。风和雨洗荡着新的山崖,新露出来的富含有机质的浅海沉积物在风化作用下,释放出二氧化碳,进入大气层,引起气候变暖。因为风和雨的侵蚀,山坡上的沉积物消失殆尽,暴露出地壳深处的岩石。这些岩石由于成分上的原因,不可能向大气层释放二氧化碳;相反,它们就像在陆地上以令人难以置信的密度生长的植被所做的那样,反而吸收了大量的二氧化碳。大气中的二氧化碳的浓度下降,全球气候开始变冷。不同纬度的温度差异增大了:极地地区变得更加寒冷;热带地区虽然变凉,但仍相对较暖。

海洋中,水温也开始下降,不同纬度之间的温度差别加强了水流循环。产生二氧化硅的浮游生物,例如硅藻和放射虫类,在寒冷的中低纬度地区繁衍。大约3800万年前新生代的中期,海洋中发生了一次事件,强烈地改变了海洋环境,标志着地球气候的一次重大改变。这时,深海中的海水寒冷刺骨。从深海有孔虫的外壳获取的证据表明,这时海底的水温下降到了4℃~5℃。

生物的外壳难道是古代的温度计吗?科学家已经发展出一种巧妙的技术,可以利用有孔虫外壳中的氧同位素的组成来计算古代海洋的温度。氧有两种稳定的同位素,氧16和氧18。在海洋生物的碳酸钙外壳中,这两种同位素的比例依赖于海水环境中的同位素组成以及生物生长时海水的温度。在海水中,氧向位素的比例受到两种条件强有力的控制,即海水的温度以及地球上是否存在大量的冰。有孔虫外壳的氧同位素的组成可以用一种叫质谱仪的仪器测量出来。然后,根据外壳中氧同位素的比例和对有孔虫生长时海水的组成的估计,科学家就能计算出古代海洋的近似水温。氧同位素法,尤其是利用深海岩心的有孔虫外壳,已经成为研究古代海洋温度、海平面的变迁和地球以往的冰期历史的最重要的方法一。

大约3800万年前,臣量的冷水涌入深梅。许多生活在海底或接近海底的生物因为突如其来的水温改变而死亡。强壮的种类和那些能迁移到温水环境中的种类活了下采。但是,这股冷水来自何处呢?

大约在深海海水变冷的同时,南极洲周围的环境变得严寒刺骨。澳洲大陆已经移向北面,来自南印度洋和太平洋的冷水开始流进南极洲的一个小小的港湾——罗斯海,引发了第一次大规模的海冰的形成。在海冰形成时,淡水首先被冻结,盐分被排除,使得周围海水的盐度变高,盐度高的冷水因为密度高而沉入到周围密度低的海水下。因此,南极洲周围海冰的形成,导致了一系列的海水沉降,盐度高、密度大的冷水沉入海洋深处,使深海的海水变得冰冷。随之,顶层温暖而底部寒冷的海洋就变成了标准,受温度和盐度的变化驱动的海流模式开始出现。

大约2000万年前,地球还在发生着变化。非洲大陆的一条缝隙慢慢扩大,形成了狭长的红海,使得沙特阿拉伯向北移动靠向亚洲大陆,封闭了古地中海水道的遗留部分。古地中海剩余的部分成了一个几乎封闭的海洋——现代地中海。这样,发生在赤道周围的暖水的全球输运永久地停止了。从这时开始,赤道的暖水循环仅能在各自的海盆中发生。南方,南美大陆已经与南极洲分离,形成了现在的德雷克通道,在南极洲周围形成了一条真正的环极地洋流,随后南半球的海洋洋流发生了彻底重组。在南半球的高纬度地区形成了一个繁荣生长的区域;来自新西兰的化石表明,大约这个时候,有大量的鲸鱼和企鹅生活在这个地区。

海洋、大陆和大气几乎已经具备了它们现代的模样。北大西洋正在扩张,格陵兰岛也已经从欧洲分离出去。将北大西洋和挪威海分开的冰岛山脊开始平静下来,并最终沉入海底。