宗教用创世说来回答这个问题,科学总是用不断演化着的知识来解释这个问题。在近代,康德和拉普拉斯依据牛顿力学,提出了太阳系演化的星云说。今天看来,他们的理论是相当肤浅的假说。20世纪关于恒星演化的理论是以核物理为基础的,而且人们试图了解整个宇宙的演化。
19世纪德国人奥伯斯提出的光度佯谬提醒人们:夜晚的天空总是黑暗的,任何宇宙模型都必须满足使夜空黑暗的条件。德国人西利格提出的引力佯谬则要求,必须假定宇宙有一定的结构,天体应该是非均匀分布的,否则地球受到的引力就不是稳定的。正是在这样的前提下,1917年,爱因斯坦根据广义相对论,导出了一个体积有限但没有边界的“爱因斯坦宇宙”。这是一个有物质无运动的静态宇宙。同年,荷兰人德西特提出了一个有运动无物质的空虚宇宙模型,它不断膨胀着,被称为“德西特宇宙”。
1922年,前苏联人弗里德曼根据爱因斯坦的引力场方程式推论出,空间的几何特性如果是平直的,就得到一个不断膨胀的宇宙;如果是凸面的,就得到一个膨胀和收缩轮换的封闭宇宙;如果是凹面的,就得到一个膨胀着的敞开宇宙。1927年,比利时人勒梅特研究了“弗里德曼宇宙”,提出了大尺度空间随时间膨胀的概念,建立了“勒梅特膨胀宇宙”模型。1929年哈勃提出哈勃关系式后,英国人爱丁顿最先把它与宇宙膨胀说联系起来,认为宇宙膨胀说得到了天文观测的证实。
弗里德曼和勒梅特的宇宙膨胀着,而膨胀总是从物质密度无穷大开始的。1932年,勒梅特在他的模型的基础上,提出了一个宇宙演化学说,认为整个宇宙的物质最初集中在一个超原子宇宙蛋里,后来发生猛烈爆炸,碎片向四面八方散开,形成了今天的宇宙。但他当时还没有足够的核物理学知识来描述爆炸后宇宙演化的具体过程和细节。另外,勒梅特当时还低估了宇宙的年龄。
1948年,盖莫夫完善了勒梅特的理论,提出了系统的大爆炸宇宙学说,大爆炸学说提出后经过一些天文学家的完善,把宇宙生存的时间追溯到约200亿年前。据说,宇宙蛋爆炸前没有时间存在,爆炸后经历了普朗克时代、大统一时代、强子时代、轻子时代、核合成时代、物质时代、复合时代等,然后宇宙开始透明,逐渐形成星系和星系团、恒星和恒星系。在太阳系形成之后,它中间的一颗行星地球,变成了生命的摇篮……
大爆炸宇宙论预言,宇宙爆炸后必定还存在着背景辐射。1964年,美国贝尔电话公司的彭齐亚斯和威尔逊发现了相当于3.5K度物体的辐射,各向同性,没有季节变化,被认为只能是一种宇宙背景辐射。这一发现被认为是宇宙大爆炸后的残余背景辐射,成了支持大爆炸宇宙论证据之一。
大爆炸宇宙论所描述的宇宙时代,包含氢核合成氦的时代。根据这种理论估计,目前宇宙中残存的氦丰度为24.6%左右。目前射电天文学家在整个银河系内和许多近邻星系中都发现了氦,甚至在更遥远的天体中也探测到了氦。在所有发现氦的场合下,有力的证据表明,无论在哪里,只要有1个氦核便有10个氢核,既不过多也不太少。宇宙中这种氦丰度,亦被视为大爆炸宇宙论的有力证据。
尽管如此,大爆炸宇宙论还不是一个完善的理论,它还不能从物理学的观点来说明宇宙初始的条件,也不能有把握地预言宇宙的终结。某些天文学家认为,被用来说明宇宙膨胀的星光谱线红移,可能是由于光在旅途中损失了能量后造成的,因而提出了疲劳光宇宙论。除此之外,有人还提出了稳恒态宇宙、星系和反星系宇宙、收缩宇宙、冷宇宙等模型。
显然,大爆炸宇宙论很像是一种物理学的神话,因为它完全是根据现有的物理学知识来解释宇宙演化的。而在物理领域本身还有许多未解之谜,例如,原子核物理学至今还没有进入夸克禁闭的大门,人类对暗物质和反物质还知之甚少。人们在期待着新物理学的诞生。在这种情况下,我们大概只能说,大爆炸宇宙论是目前最好的一种宇宙演化理论。20世纪的宇宙学家们还不能预见最终的宇宙理论。
在一定意义上,人类对宇宙演化过程的研究,主要是为了满足人类探索宇宙从何处来的需要。这有益于精神世界的丰富,但并不能直接为现实的生产活动服务。由于我们不可能用实验手段来重演宇宙演化的过程,也难把人类在有限时空中得到的学识推广到无限的宇宙时空中去,所以,大爆炸宇宙论只是一种假说,我们并不能确切地知道,宇宙究竟是怎样演化而来的,将来又会怎么样?
1.用相对论来观察宇宙的起源
我们的宇宙是如何、为何以及何时开始的?它有多大?其形若何?又由何物构成?任何一个有好奇心的孩子都有可能会问这些问题;现代宇宙学家们为作出回答也奋斗了好几十年。对于科普作家来说,宇宙学的一个诱人之处乃是其前沿领域中有那么多的问题都很容易表述。而量子电子学、脱氧核糖核酸定序、神经生理学或者纯数学的前沿论题,要把专家们的问题翻译成大众化的日常语言那真是谈何容易。
热力学第二定律告诉我们,宇宙必定有一个高度有秩序的起始点。第一定律则告诉我们,宇宙不可能自己开始。从这两条基本原则出发,我们已经能推断出宇宙是由一个来自宇宙之外的、高于自然规律的即超过自然和想要创造出深不可测秩序的实体所创造的。
爱因斯坦的广义相对论为我们指明了这一创造事件。弄懂爱因斯坦的广义相对论公式所要求的数学知识,只有极少数的人具备。有一则自20年代就开始流传的故事讲到,一位记者问相对论专家阿瑟·爱丁顿在世界上是不是真的只有三个人能懂爱因斯坦的理论。在较长的沉思之后,爱丁顿最后终于回答道:“我刚才正在努力地想那第三个人是谁。”
就当前的目的而言,关于广义相对论我们要说的主要有两点:一是它所提出的所有可验证的预测都被证明是正确的;二是广义相对论公式意味着宇宙不可能是静态的,而肯定是不断膨胀或收缩的。甚至艾萨克·牛顿也知道,他的引力定律意味着宇宙中的每一个恒星都应该是相互吸引的,直至整个宇宙都结合到一起。而且,牛顿也曾在四个维度坐标方面做过工作:三个空间坐标和一个时间坐标。爱因斯坦则认识到了时间坐标与其它三个坐标之间相互依赖的关系。
1692年,剑桥学者R·R·本特里写信给牛顿,指出根据牛顿的引力定律宇宙中的所有恒星最终必须相互吸到一块而形成一个大火球。对此,牛顿回信说:
……如果太阳及其行星以及宇宙中的物质在整个空间是均衡分布的,每一个粒子对所有其它粒子都有一种内在的引力,而且这些物质所分布的空间是无限的话,那么在该空间之外的物质借助其引力将会向空间之内的所有物质靠近,最终会落在整个空间的中央并由此形成一个很大的球状物。
牛顿就此而提出宇宙必须是无限的,而且所有恒星必须是均等地相互分开的。然而他很快又意识到,这一解决办法极端地不稳定,因为任何恒星之间的均衡距离稍有偏差就会导致造成整个宇宙崩溃的连锁反应。当然,牛顿从来没有意识到宇宙还有通过膨胀以对抗会将宇宙拉到一起的引力的可能性。
牛顿曾经指出,当一个物体处于运动状态时,其运动与任何观察者的运动成相对关系。例如,当坐在马车内的乘客在车内掷球时,对于该乘客而言此球可能只跑了2英尺远。但对于站在路旁看马车跑过去的人来说,此球可能跑了20英尺远,因为马车的运动距离也必须加到球的运动距离上。
爱因斯坦也指出,当一个物体处于运动状态时,它的运动时间与任何观察者的运动成相对的关系。因为对任何观察者来说,光总是以同样的速度运动的,而不管观察者的运动速度或方向如何。换句话说,假如你想计算打在马车前面的手电光的运动速度,你可能希望在正常的光速上加进马车的运动速度。然而与球的运动所不同的是,对乘客和看着马车跑过去的人来说,光具有以同样的速度运动的古怪特性。
时间的相对性在物体的运动速度接近于光速时变得特别值得注意:以接近光速的速度旅行的宇航员每经历一天,对地球上的人来说就是一年(尽管由于难以达到这一速度,使得这种说明只具有理论意义)。而且由于质量与能量之间的关系,对于地球上的观察者来说,在宇航员的旅行速度更接近于光速之时,其体重看起来会在增加而其身高会沿运动方向变小。
对于物体在高速运动条件下所产生的这种不同寻常的现象的描述,被称为狭义相对论,它是爱因斯坦在1905年发表的理论。该理论提出了空间—时间的概念,表述的是空间和时间是如何彼此关联的。广义相对论(发表于1915年)表述的空间—时间特性清楚地解释了引力的作用。爱因斯坦推测,引力不可能是即刻对远距离物体产生作用的实际吸引力,因为狭义相对论指出没有什么物体的运动速度会比光速更快。相反,引力是质量对空间一时间产生影响的后果。大质量的物体应该明显地“弯曲”靠近它的空间,并“放慢”任何靠近它的观察者的时间。
这样,我们就弄清了太阳的引力作用不是拖着行星的吸引力,而是由于太阳的质量弯曲了它周围的空间,从而迫使每一颗行星选择的都是在弯曲空间中最可能直的运动轨道。
至于大质量物体应当能放慢其近旁观察者的时间的预言,早在1962年就得到了完全的证实。当时,人们在放置于水塔顶端和底端的非常准确的钟表之间发现了时间差。钟表越靠近地球,时间就走得越慢,因为这里的地球引力作用更大一些。这一结果与广义相对论的预测是严格一致的。史蒂芬·霍金对人造卫星目前是如何依赖于这种经常性预测来修正它们的精确导航系统做了描述:“如果谁忽视了广义相对论的预测,那么他所计算的卫星位置将会误差几英里!”
广义相对论的正确性在准确解释牛顿定律所不能解释的水星轨道的一次不正常情况时,马上得到了验证。当其它两项预言也得到证实时,证明该理论正确的证据就越发地多了:恒星的光在经过大质量的太阳之时会发生弯曲,其光频率会在引力场中发生改变。1919年,在西非普林西比岛上观测日全食时,阿瑟·爱丁顿爵士第一个观察到了恒星光经过太阳时的弯曲现象,尽管该结果并不是太精确。天文学家瓦尔特·亚当斯后来又在白矮星天狼星B座观察到了曾经预言过的光波偏移现象。今天的测量已经表明,广义相对论预测的准确性可以达到小数点后面的五位数,和测量技术所能达到的程度一样地准确。
爱因斯坦的公式表明,假如宇宙中有足够的不太分散的质量的话,那么宇宙的质量实际上将能导致所有的空间向它弯曲,直至整个宇宙都“闭合”起来。这很像牛顿的宇宙中所有物体都将会聚在一起从而变成一个中心质量的想法。另一方面,假如宇宙的密度低到某一临界值,那么爱因斯坦公式则意味着宇宙中的所有物体将会彼此越分越远。这样宇宙将会不断膨胀并会在时间上变慢。
爱因斯坦认为,应不惜一切代价避免对爆炸的这种描述,因为不论是膨胀的还是缩小的宇宙都不符合宇宙是静态和永恒的这一常识性科学观点。因此,在1917年的一篇题为“对广义相对论的宇宙学思考”的文章中,他选择了不相信促使他导出他的公式的逻辑并提出了他的著名的“宇宙常量”。提出这一奇怪的力量是为了补偿引力的不足和增加远距离物体间的引力,因此,它与物理学中的其它已知力量皆不同。而且,它还必须达到一个十分精确的程度才能保持宇宙的稳定:要在宇宙开始膨胀与开始缩小变成一次“大压榨”之间取得完美的平衡。
1922年,前苏联数学家亚历山大·弗里德曼在爱因斯坦对静态宇宙的证明中发现了一个代数错误。在纠正了该错误并抛弃了爱因斯坦的宇宙常量之后,弗里德曼发现爱因斯坦的“静态宇宙”竟成了不可能的事。宇宙必须或者是开放式的或者是封闭式的,即或者是膨胀的或者是缩小的。
经过前几年的独立努力,荷兰天文学家威廉姆·德西特也为爱因斯坦的要求宇宙一直膨胀下去的公式找到了一种甚至是带有宇宙常量的解法。英国天文学家阿瑟·爱丁顿独立地发现了即使带着宇宙常量,爱因斯坦所取得的平衡也是一个“不稳定”的平衡——它与将宇宙送入膨胀或崩溃状态的平衡点稍有偏离。
爱因斯坦后来曾为将他著名的附加因素引入他的理论而责备自己,他称增加该宇宙常量为:“我一生中最大的失误。”从此之后,爱因斯坦不但撰文论述需要一个起始点,而且表明自己的心愿就是要“知道上帝是如何创造世界的”。
这样,特别是从20世纪60年代初期开始,当用一次又一次的测试来精确测定广义相对论的预测效力成为可能之时,科学已经从坚持永恒宇宙观的立场转而坚持宇宙是有起始点的,而这一点正是广义相对论所明确预测过的。
2.科学家们的各种宇宙演化模型
当爱因斯坦的广义相对论使人信服地描绘了物质的存在与空间易弯性的关系后,他便积极地寻找试验其模型的途径并应用于实际问题。他认为,没有应用,理论只不过是一个数学练习题,而不是物理现实的真实体现。特别是他希望其模型能描绘整个宇宙的行为举止。为达到此目的,在1917年,他设计了一个广义相对论的宇宙蓝图,一个用数学方法来描述宇宙的特征是如何随时间而演变的,即宇宙演化的图像。
他第一次做出的一个可操作的宇宙模型自认为以失败而告终:将其广义相对论的方程式应用于空间的整体时,他沮丧地看到方程式的解是不稳定的。在模型中未预见到的是,空间的距离不是保持恒定不变,而是有赖于环境随时间伸长或缩短。
爱因斯坦考虑是不是做了件大错事,为什么宇宙中各点之间的距离会改变呢?空间不应当自行扩大或缩小,好像是一块潮湿的羊毛毡子那样。看来,没有发生这种景象的物理理由。
为了改正他的“错误”,他在方程式中额外增加了一个他称之为宇宙常数的项,用以稳定他的方程式,并保证宇宙中的距离不随时间而改变。增加这个宇宙常数项,对爱因斯坦来说多少有点儿权宜之计,但他想不出更好的办法来保护他所看到的空间自然静止的图像。
在爱因斯坦发展了他修正的模型(该模型被称为爱因斯坦宇宙)之后几年,当得知宇宙确实在膨胀的证据时,他很惊奇,极度后悔在自己的模型中加了一个宇宙常数项,称其为他一生中所犯的最大错误。
当大多数科学家相信宇宙曾经是极小的,后来膨胀了的时候,他们便开始考虑支持这一观点的宇宙模型了。1922年,由苏联数学家弗里德曼发展起来的宇宙模型来自爱因斯坦的广义相对论方程,但没有宇宙常数项。因为剔除了这一稳定项,弗里德曼的解是动态的而不是静止的。这一伸缩性对于描述不断运动着的宇宙是重要的。
弗里德曼宇宙学有三种不同的类型,分别叫作开放的、闭合的和平直的宇宙模型。三者由它们的长期行为来区分,表现为随时间而变化的涨到多大(或缩到多小)。
开放式模型从一点开始,宇宙的体积开始时为零。当开放式宇宙发展时,它开始长大,一旦开始了膨胀,便不停顿地膨胀下去,就好像一群青春年华的少男少女,由于脑垂体生长激素的不停地分泌,任何因素都不能阻止他们身体的生长发育。
闭合式模型则正相反,其长大有个限度。其开始时与开放式宇宙完全一样,从一点向所有方向爆发式地扩张。但在其历史进程中的某一时刻,宇宙的膨胀足够慢时所有方向上的长大均停止下来。最终,使宇宙长大慢下来的力导致宇宙逆转其进程并缩小到一点。此情景常被称为大暴缩。
平直式宇宙介于上述两种情形之间。即开始时和开放式、闭合式一样;此后,它虽然也不停地膨胀,但总是在坍缩的边缘摇摆。
这三种模型中的哪一种代表我们宇宙的情形呢?为了回答这个问题,理论工作者引进了一个叫做Ω参数的物理变量。这个量来源于爱因斯坦方程的弗里德曼解:它是一个因子,表示宇宙中物质的总量——包括可见的物质和不可见的暗物质——与使宇宙坍缩所需要的临界质量之比。Ω之值决定着我们所考虑的宇宙是开放的、闭合的还是平直的。若Ω小于1,宇宙是开放的,它将一直膨胀下去;若Ω大于1,则我们生活在一个闭合的宇宙内,以后总有一天要逆转其膨胀势头回缩到一个点:若Ω正好等于1,则空间是平直的。
不论由Ω决定的宇宙的命运是什么样子的,宇宙的来源只有一个。天文学家们相信,现在宇宙中所有的物质——恒星、行星、星际气体等等——在从前的某一时刻曾经凝聚为一个尺度无限小但密度却无穷大的“球”。那时,在被称作大爆炸的时刻,该球从空无(Nothingness)向外爆发。
3.人类重现宇宙开初的演化历史
现代宇宙学的主要目的是,利用在地球及其附近确立的物理学定律,或利用从这些局部成立的定律合乎逻辑地作出的推论,根据今天所得到的证据,详细地重现宇宙过去的历史。当然,我们在时间上回溯得越久远,宇宙环境就变得越极端,我们或许需要作出的外推与那些能在实验室中检验的物理学定律也就偏离得越远。
我们关于膨胀宇宙图景的发展,及对其既往之重现进展非常缓慢。在20世纪30年代,比利时牧师兼物理学家乔治·勒梅特在此事的起步阶段起了带头作用。他的“原始原子”理论乃是我们如今所说的“大爆炸”理论的鼻祖。40年代后期,一位移居美国的俄国人乔治,盖莫夫(George Gamov)与他的两位年轻的研究生拉尔夫,阿尔弗(Ralph Alpher)和罗伯特,赫尔曼(Robert Herman)一起,又迈出了最重要的几步。他们开始认真考虑已知的物理学理论用于勾画宇宙早期阶段状况的可能性。他们认识到了关键之所在。如果宇宙肇始于遥远过去的某种既热且密的状态,那就应该留下某种从这个爆发式的开端洒落的辐射。更具体地说,他们认识到,过去应该存在着某个时候,其时宇宙的年龄仅为几分钟,它热得足以使每个地方都发生核反应。后来,更加详细得多的预言和观测结果证实了这些重要的见地。
1948年,阿尔弗和赫尔曼预言,从大爆炸散落的残余辐射由于宇宙膨胀而冷却,如今它所具有的温度约为绝对零度以上(5℃),或者说5开(绝对零度等于摄氏零下273度,即——273℃。但是他们的预言并未引起人们的普遍重视,而被埋没在浩瀚的物理学文献之中。另外几位科学家考虑了一个热的膨胀宇宙之起源问题,便是他们谁也不知道阿尔弗和赫尔曼的论文。理由是明白的。当时的通讯、交流方式无法与今天同日而语。在40年代和50年代,在大多数物理学家看来,再现宇宙早期的细节并不是一种非常严肃的科学活动。但是多年以后,即1965年,美国新泽西州贝尔实验室的两位无线电工程师阿尔诺,彭齐亚斯(Arno Penzias)和罗伯特·威尔逊(Rober Wilson)却十分意外地发现了这种宇宙辐射场,当时他们正在为跟踪第一颗“回声号”(Ccho)卫星而校准一种很灵敏的无线电天线。与此同时,在附近的普林斯顿大学,由罗伯特·迪克(RoberDicke)领导的一个科学家小组已独立地重新发现了阿尔弗和赫尔曼早先作过的预言,并着手设计一台探测器以供搜索大爆炸的残留辐射。他们听说了贝尔实验室这台接收器中存在着无法阐明的噪声,并立即将它解释为源自大爆炸的残余辐射。它相当于在电磁波谱的微波部分波长为7.35厘米的某种无线电波信号;如果假设它是热辐射,那么它所具有的能量就相应于2.7K的温度——这与阿尔弗和赫尔曼富于灵感的估计非常接近。它被称为“宇宙微波背景辐射”。作为其预言与发现始末的一项追记,我们应当提及:1983年,人们开始获悉前苏联无线电物理学家什茂诺夫(Shmaonov)也许早在1957年就已发现了这种辐射,并用俄文公布了这一事实。什茂诺夫建造了一种对微波信号敏感的天线,并报道探测到了某种在天空中各个方向上均匀的信号,与之相当的辐射所具有的温度介乎1K和7K之间。当时无论是他本人或是其他任何人都不清楚这项发现的重要性。事实上,什茂诺夫直到1983年才闻知大爆炸的预言以及彭齐亚斯和威尔逊的发现,而这已经是后两人因18年前作出他们那项卓越的发现而荣获诺贝尔奖之后5年的事情了。
这项发明是人们开始认真地研究大爆炸模型的一种信号。渐渐地,人们对宇宙微波作了更多的观测,这些观测揭示了宇宙微波背景辐射的其他性质。这种辐射在所有的方向上都有相同的强度,精度至少高达千分之一。而且,人们在不同频率上测量了它的强度,开始揭示出其强度随频率变化的方式(即它的“谱”)具有纯热的特征。这样的辐射称为“黑体”辐射。不幸的是,地球大气中的分子对于辐射的吸收和发射阻碍了天文学家去证实整个背景辐射谱正是热辐射谱,人们仍然怀疑,它或许是由宇宙开始膨胀之后很久发生的种种剧烈事件产生的而并非产生于大约150亿年以前的膨胀之始。只有在地球大气外观测这种辐射才能消除这种疑虑,而这正是美国国家宇航局(NASA)的宇宙背景探测器(COBE)卫星于1989年开始从空间测量整个背景辐射谱的第一项巨大成就。那是人们在自然界中所曾见到的最完美的黑体谱,它非常引人注目地确认了宇宙过去曾比今天要热成千上万度。因为只有在如此极端的条件下,宇宙中的辐射才有可能呈黑体形式而达到如此高的精度。
人们利用高空飞行的U2型飞机进行了另一项关键性的实验,以证实背景辐射并非近期起源于宇宙中邻近我们的部分。这些早先的间谍飞机机身极小、翼展却很大,这使它们成了非常适合于进行天文观测的稳定平台。这时,它们是朝上测天而不再是往下观地了!它们探测到天空各处的辐射强度具有某种系统的变化。倘若这种辐射起源于遥远的过去,那么出现这种变化便在意料之中。如果这种辐射型成了某种均匀膨胀的“海洋”——它生成于宇宙的早期,那么我们就将在这海洋中航行。地球环绕太阳运动,太阳环绕银河系中心运动,银河系又在本星系群中运动,如此等等;这一系列的运动意味着我们正沿着某个方向在背景辐射中穿行。当我们沿此方向观看时,辐射强度将显得最强,在与之相差180°的方向上辐射强度则显得最弱;在这两者之间,辐射强度应随角度而呈某种富有特征的余弦变化,就像在暴雨中奔跑,胸前湿得最厉害,背后则湿得最少。这里,在我们运动的方向上被扫过的是微波。正如预期的那样,观测揭示了某种完美的“余弦式”变化。
接着,几项不同的实验证实了这一发现——它又被称为“天空大余弦”。它肯定了这样一个事实:我们,以及包含我们寓居其中的本星系团在内的那个区域,都正相对于宇宙微波海而运动。因此,背景辐射不可能是局部区域产生的,要不它就会和我们一块儿运动,那样我们就不会看到其强度与温度的余弦变化了。
我们穿越来自大爆炸的背景辐射而运动,并不是造成其强度随方向稍有变化的唯一可能的原因。倘若宇宙在不同的方向上正以稍稍不同的速率膨胀,那么在膨胀得较快的方向上,辐射就将较弱较冷。类似地,如果在某些方向存在着某些物质特别集中或特别匮乏的区域,那么这也将使我们从这些方向上接收到的辐射强度发生变化。发射COBE卫星的动机就是搜索这些变化,1992年,这些变化的发现成了世界各国报纸的头条新闻。
当我们考察来自天空中不同方向的背景辐射强度时,我们就获悉了有关宇宙结构的大量引人注目的事情。我们发现,它正在所有的方向上以相同的速率膨胀,其精度优于千分之一。我们说这种膨胀近似地是“各向同性的”——也就是说,在每个方向上都相同。如果有人从某个“宇宙博览馆”中随机地挑选有可能存在的宇宙,那就会有无数个在某些方向上远比其他方向膨胀得更快的宇宙品种,或者是以很高速度旋转,或者甚至是在某些方向上收缩而同时又在其他方向上膨胀着的宇宙变种。我们的宇宙确实很特殊。它似乎处于某种安排得极为妥善的状态之下:在所有的方向上膨胀都以相同的速度进行下去,其精度非常之高。这就好像你回到家里发现所有孩子的卧室都极其整洁——一种非常不容易遇到的事情。这一定是施加了某种外界的影响。同样地,对于宇宙引人注目的各向同性而言,也必定存在着某种解释。
宇宙学家们长期以来都把宇宙膨胀之各向同性视为必须予以阐释的一大疑谜。
宇宙学家们在寻找这些解释时,构造了各种可能的宇宙史,它们既能说明已知的事实,又能为尚未说明的性质提供解说。宇宙学家们最感兴趣的是这样的假设:它既能解释有关宇宙的令人困惑的特征,又能预言某些尚未探测到的宇宙新属性搜索这种预期的特征,就可以凭借观测来检验原先的假设,这恰如利用实验室中的实验来检验其他科学理论的预言。遗憾的是,我们并不能保证自己的仪器灵敏得足以进行我们想要的一切观测。由于这种现实的局限性,对于许多理论作出的预言,我们尚无法用观测来检验。但是,正是此类预言往往支配着未来将会发展何种新型的天文台或人造卫星。
可以采取的第一条途径是说宇宙就是各向同性地开始膨胀的。宇宙目前的状态只不过是其特殊的起始条件的某种反映。事情现在所以如此,乃是因为当初如彼。实际上,这解决不了什么问题。它什么也没有解释,也没有告诉我们任何新东西。当然,它也可能是对的。倘若果真如此,我们也许就可以指望,存在着某种更深刻的“原理”,它使宇宙必然(或者至少是以压倒优势的可能性)肇始于某种各向同性膨胀的状态之中。这一原理也许在较为局部的范围内还有着其他应用,据此便可以揭示其自身之存在。其令人不悦之处则在于,它把解释宇宙现状的重担完全置于未知的(而且也许是不可知的)宇宙起始状态之上。
第二条途径是将事物的现状考虑为在宇宙中进行的各种物理过程的结果。这样的话,也许无论宇宙的初始状态是多么地不规则,在历经数十亿、上百亿年之后,所有的不规则性均已刷尽,留下的则是某种各向同性的膨胀。这种做法有一个优点,即激励人们拟定某种确切的研究计划,以期发现它是否可能真的正确无误。是否存在这样的物理过程:它能够抹平膨胀中的非均匀性?“抹平”的过程历时多久?时至今日,它们能否摆脱所有的不规则性,或者只是消除了其中的一小部分?不仅如此,这种做法还有一个令人满意的特点:它使我们对宇宙现状作出的假设尽可能不依赖于我们对未知的宇宙初始状态的了解。我们很乐于能够这么说:无论宇宙是如何开端的,在它的早期历史上必不可避免地会发生一些物理过程,后者确保了宇宙在膨胀150亿年之后,看起来差不多就应该像它今天的那种模样。
这第二种哲学虽然听起来极富吸引力,但也有一个弱点。如果我们真能证明宇宙之现状确实与其起始时的条件无关,那么我们现在观测宇宙的结构也就不能告诉我们有关那些起始条件的任何情况了。因为这样的话,宇宙的现状便可与任何起始状态相容。但是,与此相反,如果宇宙目前的结构——其膨胀之各向同性、或是由星系成团性展示的结构图案——部分地反映了宇宙开初的方式,那么就存在着这样的可能性:通过我们今天对于宇宙的观测,或许便能断定有关宇宙初始状态的某些情况了。
长期以来,早期宇宙内发生过那些事件被笼罩在迷雾中。现在,由于近代粒子物理学的发展,科学家们有了一个在宇宙创生最初一分钟里所发生事件的合理图像。下面就来叙述一下这一图像。
我们从宇宙创生大爆炸以后的1/100秒时期的历史开始叙述。那时,宇宙温度高达1000亿开以上,因此不存在普通物质。原子和分子尚未形成,便因高温而爆炸开了。整个空间充满着基本粒子组成的“汤”,“汤”内含有相同数量的电子、中微子(当中子衰变为质子和电子时产生的粒子)、正电子(带正电荷的电子的反物质)、反中微子(中微子的反物质)和光子;少量的重得多的粒子,包括质子和中子以及组成暗物质的一些奇异粒子。
要了解那时的宇宙致密到什么程度是困难的,不过可以想象所有的物质实体被压缩到一个比它们现在所占范围小数十亿倍的区域。这么小范围的空间维持不了多久,很快,宇宙的尺度便快速增大。在我们最初的“快拍”以后头几秒的时间内,宇宙差不多胀大了100倍。
宇宙胀大,其中的物质开始冷却。这是由下述物理原理所决定的:密闭系统在膨胀时温度势必要下降。这一快速冷却将导致许多重要的变化:第一,许多存在着的粒子,如电子和中微子将发现有利于它们与其反粒子的结合,结合的益处是在结合过程中获得能量。当物质与反物质融合时,它们彼此消灭了对方并产生出光子形式的辐射。因此,在这一时期,光子的数量骤然增加。与此同时,宇宙中的大多数中子转变为质子、电子和中微子。由此可见,在此时期终结时,剩下的主要是光子的“海洋”,在此“海洋”中点缀着不同数量的质子、电子、中微子和中子,以及较少量的稀有粒子。
对于原始宇宙演化阶段的下一步观察,我们来看看大爆炸以后3分钟的景象。宇宙比我们上一次“快拍”时大大地冷却了。由于温度降低,粒子的运动变慢,这就使它们有可能合并成稳定的原子核。
首先组成的原子核(不算氢核,因为它不过是质子罢了)是氘,也叫作重氢,它是由一个质子和一个中子组成的。一段时间以后,宇宙中的大多数中子都被纳入氘内去了。
下一个元素是当氘与质子聚合时形成的氦的稀有形式氦—3.再下一步,当中子碰撞氦—3时,诞生出普通的氦—4.一步一步地,从氢到锂,所有我们知道的氢原子核都是由质子、中子和氘等基本成分组成的。
现在,宇宙中这些物质每一种的丰度(丰富程度),提供了宇宙创生大爆炸模型的过硬的证明。科学家们能设法估计空间内存在有多少氢,并将此数量与氦的数量比较。他们发现,此比值与理论所预见的每一个氦原子相应有12个氢原子符合得很好。迄今为止,用此比例检验大爆炸图像的效果一直非常好。
1995年,在大爆炸瞬间产生的氦被首次检测到。约翰·霍普金斯大学的天体物理学家戴维森克里斯和郑炜,用在“奋进号”航天飞机上的紫外望远镜对来自类星体的光线做详细的搜索。他们观察此辐射的目的,在于寻找该光线被星系际氦吸收的证据。探索的结果,确实找到了表明整个宇宙中存在着大量氦的特征吸收谱线(波长的图式表示被氦捕获的辐射)。他们发现,在所探寻的空间区域中的氦的含量,正好与标准宇宙模型所预见的12:1的氢与氦之比一致。
比锂核重的原子核不能在大爆炸中被制造出来,这是因为当锂在形成时,宇宙冷却得过多,更重元素的聚合是不可能的。所有较重元素要在晚得多的时候,在恒星的核心中激烈的高温熔炉里锻造生成。
下一个宇宙演化的重要阶段是复合时期。在此时期内,宇宙中大多数带正电的离子(原子核)收集足够的带负电的电子而形成不带电的中性原子。在这一过程中,大量的辐射被释放出来。这种情况的发生是由于光子倾向于粘牢带电离子和自由电子,围绕着它们之间跳跃。一旦离子成为中性原子,电子被锁定在紧紧的轨道上绕原子核运动,光子便能在空间自由地传播了。
从此时开始,宇宙沉浸在背景辐射的海洋中,起先,此辐射是热的,但随着宇宙的膨胀,其温度下降得很快。今天,此原初能量,已冷却到了绝对零度以上2.735开,继续充斥在宇宙中作为大爆炸时期的一个最后保留下来的残迹。
科学家们有正当理由相信上文所描述的这些事件是发生过的。但所不清楚的是,这些原初现象是多长时间以前发生的。宇宙年龄问题是现代宇宙学中的一个最有争议的问题。
4.难以预测的宇宙最终命运
从彭齐亚斯和威尔逊的发现开始,20世纪最后的30多年是宇宙学发展史上获得辉煌成就的年代。我们已能探测到更遥远的空间和回溯到更古老的年代,这是几十年前,任何年代都难以想象所能达到的时空领域。我们确实已站立在比以前任何年代都能获得更深奥、更丰富的宇宙知识的门槛上了。
由于科学家们多年来的不懈努力,对于宇宙深处的真实情况我们已经知道了不少。首先,我们已知道宇宙曾经有一个时刻非常之热并且是难以想像的小。其次,当宇宙很年轻时,我们推测它是均匀的,或者是不知何故,任何一个大的不规则在暴胀时期被平滑掉了。但不管整个宇宙如何地匀称,其中一定点缀着星系祖先的微小种子。
在过去年代的某一时刻,简单的原子形成了,宇宙辐射能自由地在空间传播(最终,这种辐射的图像被彭齐亚斯、威尔逊、施穆特和其他一些人绘制了出来),新产生出来的原子及时地聚集在宇宙的较密区域——可能是充满大质量暗物质的区域,热物质的巨云凝聚成星系、星系团及超星系团——宇宙结构形成了,与此同时,更大的宇宙结构,如宇宙气泡、纤维和空洞以及突出的宇宙长城开始成形。当宇宙不断地膨胀时,这些天体也一直不断地相距越来越远,而背景辐射也越来越冷。
很快,恒星星系中诞生第一代恒星——星族Ⅱ恒星——主要是由氢气形成的。当它们死亡时,常出现凶猛的爆发,从它们的灰烬中诞生出较年轻的星族Ⅰ恒星。其中的一些形成了行星系统。一部分行星系统支持智慧生命的繁衍。这些行星中的一个叫作地球。
科学家们有正当理由自信上面叙述的这些事件中的大多数确实发生过。基于30多年来天文学家和物理学家搜集到的证据,特别是关于宇宙微波背景的信息以及关于今天已知基本粒子数的数据,可以说对宇宙创生大爆炸的情景已有相当多的了解。
但是,天文学家认为,在他们了解宇宙起源的同时,对于宇宙今后的命运他们还难以捉摸。宇宙是开放的、闭合的还是平直的(这些是在前面讨论弗里德曼模型时所揭示出来的三种可能性)?换句话说,宇宙将一直膨胀下去呢,还是膨胀片刻然后在某一天又开始收缩,还是总在以上两种情形之间摇摆?
如果宇宙是开放的或平直的,其最终的命运将是一个绝对寂静的结局。渐渐地,随着宇宙不断地膨胀,越来越多的恒星将耗尽它们的核燃料而成为白矮星、中子星及黑洞。白矮星最终将完全燃尽成为一个死寂的叫黑矮星的天体。最后,随着最后一批发光恒星的死亡和通过霍金辐射的黑洞蒸发,空间没有了可用的能量,没有了恒星能源的驱动力或来自任何其他燃料泉源的能量。所有的物理过程都到了完全停止的时刻,这一最后状态,叫作热寂,将构成时间本身的终结。
如果宇宙是闭合的,则是另一番景象,其苍白的年代将更具戏剧性。在未来的某一时刻,哈勃膨胀将停止,转而成为普遍收缩。当空间本身向里收缩时,天空所有的星系都将逆转它们的行程,转为互相接近。最后,在一个极相似于时间反转的大爆炸事件中,宇宙将聚缩为一个奇异性的大小为数学点的区域。
理论工作者已经证明这几种不同的可能性可由参数Ω来描绘。这一参数表示宇宙中之质量相对于宇宙重行坍缩所需的临界质量之比。目前,天文学家有好几种测定Ω之值的方法。
方法之一是估计宇宙中的发光物质和暗物质各有多少。研究人员已确知单靠发光物质是不足以使宇宙闭合的。其次,根据现在对暗物质的发现,存在于空间中的暗物质的量也不能满足平直的或闭合的宇宙的需要。这些结果导致宇宙是开放的结论。
但从这些考虑便得出宇宙最终命运的结论仍为时过早。第一,对不发光物质的研究尚在起步阶段,而且天文学家正在用已收集到的新数据对暗物质的性质和数量的估计进行修正。今后,每重新评估一次,对暗物质的质量估计便会前进一步。
况且,这种计算Ω之值的方法有赖于宇宙临界质量的精确测定。虽然感到遗憾的是,临界质量参数是哈勃常数的函数。因为天文学家尚未确定哈勃常数,临界质量是多少也难以肯定。
为了排除这些障碍,一个由加利福尼亚大学伯克利分校的珀尔特、彭尼柏克和戈德哈伯领导的英一美国科学家小组,将另辟蹊径寻找Ω之值。他们寻找的是一个与Ω有关的常数,叫减速因子的数值。该因子的定义为宇宙膨胀速度随时间而变化的变化率。对于一个弗里德曼宇宙来说,该因子之值正好等于Ω的一半。因此,减速因子之值小于1/2、等于1/2和大于1/2,分别表示宇宙是开放的、平直的和闭合的。
英一美小组的测试方法,包括应用位于非洲西北海岸加那利岛上的聚光本领较强的、以牛顿的姓名命名的望远镜来测量遥远超新星爆发时的红移和距离。他们研究的超新星相当地遥远,其光线到达地球要经过几十亿年。因此,这类天体体现宇宙历史的较早时期——一个可假定为不同于今天的哈勃膨胀的时期。英一美小组希望能记录下这一差异,计算出减速因子,然后用此值去预测宇宙命运。
当代天文学家们时常发现他们自己陷进稀奇佯谬的网中,他们按照广义相对论分析宇宙所含物质的分布情形来预测宇宙的命运。但是为了要明白这些物质是如何分布的,他们又时常做出关于宇宙长期行为的一些假设——它是开放的、闭合的、还是平直的。例如,暴胀学说认为今日的宇宙是平直的。
为了摆脱这一困境,研究人员学会更虚怀若谷地对待宇宙的形状和结构问题——避开所有关于大爆炸性质的不必要的假设。许多人转变到宇宙的“设计者模型”,该模型把目前对宇宙年龄的估计、结构的等级式和物质分布三者没有矛盾地结合起来。这些新奇的学说特别适合于调和现在知道的宇宙学的数据。但这些学说时常偏离弗里德曼模型,潜藏着不寻常的特色,如爱因斯坦抛弃掉的宇宙常数项。只有将来的实验,才能说明这种从根本上的离开弗里德曼模型是否是必要的。
现在,的确是一个研究宇宙结构的激动人心的时代。一方面,近年来在对恒星、星系和其他天体的研究方面取得了长足的进展,好像HST差不多每几个星期都有新的发现。另一方面,像年龄问题、暗物质的窘境、大吸引体之谜和宇宙的命运等等问题使得一般自信的科学家们感到困惑。对宇宙越熟悉,就觉得它越古怪。这就足以使你希望抓住一台望远镜,步入夜空,亲自去看看宇宙在发生些什么事情。