能翻译中国古书的专家是很难找到的。能翻译与数学思想有关的中国著作的专家就更加难找了。这就是关于中国数学题材的例子较少的原因。弦图,在图中,内正方形的面积被标明为5×5或52=25平方单位,这正方形被分面面积为(1/2)(3×4)的4个直角三角形和面积为1×1的一个正方形,共计25平方单位。同一正方形被分成两个较小的互相交叠的正方形,一个是3×3,另一个是4×4.它们的交叠部分与5×5正方形中没有被它们占据的空余部分面积相同,这说明大正方形的面积(52)等于两个小正方形的面积即32与42的和。
是中国数学家运用几何和算术工具获得代数结论的技巧。采自中国古书《周髀》。《周髀》的年代是有争议的,可能范围是从公元前1200年到公元100年。如果公元前1200年是准确的,那末它就是现在所知道的对于毕达哥拉斯定理的最早证明之一,比毕达哥拉斯及其信徒们的时代更早。在整个历史上,毕达哥拉斯定理曾经出现在众多文明之中。在建筑上,它是保证作成直角的一种方法。在数学上,这个定理曾经是并且至今仍是贯串许多数学学科的一个不可缺少的工具。
两个阴影矩形面积的和等于小阴影正方形(由两个交叠正方形造成)的面积。令5、4和3为变量c、b和a的值,从而证明a2 b2=c2.这个图说明正方形的面积如何通过那4个三角形和中间单位正方形面积的相加而求得。一般地,它证明了c2=4(1/2)ab (a-b)2=2ab (a2-2ab b2)=a2 b2.