前面已经介绍了,米兰芬是《镜花缘》里的一个“才女”,精通数学,在书中有不少她解数学题的故事。
有一位才女要考考米兰芬:“有一套金杯,大小一共9只,共用126两黄金打造,这些杯子从小到大每只都比前一只重同样多,且第二只是第一只重量的2倍”,她问米兰芬,“你能算出杯重吗?”
米兰芬说:“这要用‘差分之法’。”并算出这9只杯子重量依次为2两8钱、5两6钱、8两4钱、11两2钱、14两、16两8钱、19两6钱,22两4钱和25两2钱。
这里“差分之法”实际上就是现在的等差数列的计算方法。由于从第二个杯子起,各个杯子的重量分别是最小杯的2、3、4、5、6、7、8、9倍,所以,这些杯子的重量是最小杯子的1 2 3 4 5 6 7 8 9=9(9 1)÷2=45(倍)。
于是,最小的杯子重量为126÷45=2.8(两),以后再算出各个杯子的重量。
又有一位才女指着一张圆桌,问米兰芬:“你能算出它的周长吗?”
米兰芬说可以,她叫人拿尺量得圆桌直径为3尺2寸,然后画了一个“铺地锦”:
于是得出:圆周长为一丈零零四分八。并说周三径一是古率,不太准,较准确的数字是径一周三一四一五九二六五,(正是祖冲之计算的结果)并声明只用“大数”(较接近的近似值)三一四计算得出的圆周长。这就是说,米兰芬用3.2×3.14=10.048.
什么是铺地锦呢?
铺地锦原来是古代阿拉伯人计算乘法时用的一种方法,后来传入我国,这种算法被起了一个很好听的名字:铺地锦。你看前面米兰芬画的那个乘法图式,象不象用瓷砖铺起的地面。我们如何用铺地锦来计算乘法呢?
比如要计算34227,被乘数与乘数分别有3个与2个有效数字。就可以画一个三列二行(竖的叫列,横的叫行)的方格,并画出一系列的对角线。在方格上方写上被乘数342,每个方格上写一个数字,右方从上列下写出乘数27,然后就开始相乘:先用2分别乘以3、4、2,得到6、8、4,把这三个数字分别填在与被乘数、乘数的对应数字对齐的方格中,均填在下半格。再用7分别乘3、4、2,得出21、28、14,把这三个数依次填在相应的格子中。各个积的个位数字填在右下的半格中,十位数字填在左上的半格中,填完后,按斜线,把每两条斜线间夹的数字分别相加,和写在格子外的相应位置。如和超过10,则格子外只记和的个位数字,而和的十位数字则在上一斜线间补记上。在上一斜线间数字求和时,这些补记的数字也要加进去。全部加完后,从左上到右下沿格子外读数,即是所求积,即34227=9234.
这个乘法在古印度则是这样算的:
古印度算法与铺地锦在形式上虽然不同,但实质上是一样的,现代的竖式乘法则是在此基础上加以改进的结果。