当让放射性元素发出的射线通过强磁场时,这三种射线便分道扬镳成为三股,朝一个方向弯曲得最厉害的是β射线,与它方向相反,稍稍弯曲的是α射线,而径直穿过磁场的是γ射线。这表明α、β射线都是由带电粒子组成的,且所带电荷方向相反,γ射线是不带电的。
贝克勒尔首先证明,β射线是由高速运动的电子流组成的。α射线则要复杂得多,卢瑟福花了整整6年时间,直到1908年,才搞清α粒子实质上是氦的原子核。γ射线是一种波长比X射线还要短的电磁波。
卢瑟福是一位物理学家,为了更好研究放射性物质,他和年轻的化学家索迪结为搭档。来自两个不同学科的科学家取长补短,很快就获得了累累硕果。
在研究放射性元素钍的时候,他们发现已经提纯了的氢氧化钍放置一段时间,放射性会增强,也就是说钍变成了放射性更强的元素,他们称之为钍X,钍X也不稳定,又会变成放射性不同的另一种元素……
这是什么原因呢?卢瑟福和索迪抓住这一现象不放,进行了深入研究。1902年,他们提出了元素衰变的理论,指出放射性元素是不稳定的,它不断放出射线,由母元素变成子元素,又由子元素变成孙元素……直至最后变成稳定的、没有放射性的元素为止。他们还找到了铀、钍等放射性元素的衰变系列。
元素衰变理论揭示了放射性现象的本质,打破了自古以来一直认为的原子是不可创生也不能毁灭的观念,有力地证明了一种元素的原子可以变成另一种元素的原子。
1908年,卢瑟福因发现放射性衰变和在放射化学方面的成就,获得了诺贝尔化学奖。索迪也因发现放射性同位素的成就获1921年诺贝尔化学奖。
然而,卢瑟福的更伟大的发现则是在获得诺贝尔奖以后取得的,那就是提出了原子的有核模型。
原子结构的行星模型
电子的发现,放射性现象的发现都启示人们,原子内部一定有十分复杂的结构。
那么,原子内部的结构是什么样的呢?物理学家们提出了许多有关原子结构的模型,其中最有名的就是汤姆孙的果子面包模型。
汤姆孙认为,原子是由一个带正电荷的实体组成的,带负电荷的电子有规则地镶嵌在上边,就像葡萄干镶在面包上一样。电子一方面受到正电荷的吸引,一方面受到它们之间相互排斥的作用,而维持着平衡。这个模型能较好地解释许多化学现象。
开始卢瑟福也赞同这种无核模型。为了检验原子的结构,卢瑟福与他的两名助手盖革、马斯顿做了一个历史上非常有名的实验,那就是α粒子散射实验。
他们把一个放射源放在开有小孔的铅盒中,这样从这个小孔中就会射出一束很细的α粒子流,然后,让这束粒子流打在一块很薄的金箔上,金箔的后边放着一块硫化锌荧光屏,穿过金箔的α粒子打在上边会出现一个闪耀,因此用它可以记录α粒子的轨迹。
按照汤姆孙的模型,α粒子穿过金箔时应当发生小角度的散射,可是实验结果完全不是这样,大多数α粒子都畅通无阻地通过了金箔,径直打在荧光屏上;只有少数粒子发生了散射,而且都是大角度散射;个别的α粒子甚至被反弹了回来。
卢瑟福惊奇万分,他形容当时感到“就好像对着一张纸放了一发炮弹,而炮弹却被反弹回来打在自己身上那样难以置信”。卢瑟福为此苦苦思索了几个星期,从实验结果只能得出这样的结论,那就是原子内部有很大的空隙,因而绝大部分α粒子都能径直通过;少数α粒子发生大角度偏转,甚至被反弹回来,一定是碰到了质量远大于α粒子的、带正电荷的极小粒子的结果。因为α粒子是带正电的,同种电荷的粒子相互排斥。他通过精密实验和理论计算,得出原子的半径在100皮米左右,而原子核的半径为10-2~10-3皮米,也就是说原子核的半径只有原子半径的十万分之一到万分之一。
在大量实验的基础上,1911年卢瑟福提出了原子行星模型,那就是原子中有一个极小的核,它几乎集中了原子的全部质量和所有正电荷,原子核带有多少正电荷,核外就有多少个电子,它们就像太阳系中的行星绕太阳旋转一样绕着原子核运动。
卢瑟福的行星模型很好地解释了α粒子散射实验以及一系列化学、物理现象,因此很快为人们所接受。不过,卢瑟福的模型也不是尽善尽美的,后来,他的学生、著名的丹麦物理学家玻尔,应用量子力学,使这一模型变得更加完善了。
原子核的结构
原子是由电子和原子核组成的,那么原子核还可不可以再分呢?它又是由什么组成的呢?
既然一个电子带有一份电荷,人们自然想到,原子核很可能也是由带一份正电荷的粒子构成的,氢的原子核是最轻的原子核,它只带有一份正电荷,是否原子核就是由它们组成的呢?
1919年,卢瑟福用α粒子作炮弹,去轰击氮的原子核,结果发现,氮原子俘获了α粒子变成了氧原子,并且产生了一种新的射程很长、质量比α粒子更小,带一个正电荷的粒子,研究证明,这种粒子就是氢的原子核,人们把它称作质子。
这是在人类历史上第一次用人工方法实现了核反应,把一种元素变成了另一种元素,实现了炼金术士们“点石成金”的梦想,同时,也证实了原子核中存在着质子。
在卢瑟福之后,人们用α粒子轰击硼、氟、钠等轻原子,也都发生类似的核反应,放出一个质子。而周期表上所有元素的原子核的质量大体上都为质子的整倍数,因此,有人猜想原子核是由带正电的质子组成的。
但是这种猜想有着明显的矛盾,除了氢元素之外,所有元素原子核中的电荷数目并不等于它们的质量,例如氦的原子核质量是氢的4倍,可是只带有2个正电荷。于是有人提出,原子核是由质子和电子组成的,电子中和了一部分质子的电荷,使剩下的正电荷正好与核外电子数相等。但是这一假说也碰到了困难,它不能解释原子核自旋等现象。
科学家们在思索着,寻找着。
1920年,卢瑟福在圣诞节给儿童讲科学知识时提出了一个大胆的假说,原子中有带负电的电子,带正电的质子,为什么不可以有不带电的中性粒子呢?他还预言了这种中性粒子的性质——它能很容易地穿过物质。
大多数人对卢瑟福的预言抱着怀疑态度,有一个人,就是卢瑟福的学生查德威克却对此坚信不疑。他立即着手进行种种试验来捕捉这种中性粒子。但是10年过去了,这种中性粒子还是毫无踪影。
1930年,德国物理学家玻特和贝克尔在用α粒子轰击锂、铍等轻元素时,发现了一种贯穿力很强的辐射线,能穿过2厘米的铅板,他们认为这是γ射线。
1931年,法国物理学家约里奥?居里夫妇,也即居里夫人的女儿与女婿,对这一实验做了进一步研究,发现当这种射线射入含大量氢原子的物质石蜡时,会放出质子。实际上他们已经走到了发现中子的大门口,但由于囿于前人的研究成果,认为只有γ射线才是中性的,一个重大发现令人惋惜地失之交臂。
查德威克看到了约里奥?居里夫妇的研究报告,立即意识到这就是他寻找已久的中性粒子,他分析γ射线要想打出质子必需有高到难以想象的能量才行,只有质量和质子相近的中性粒子才能把质子轰击出来。他立即投入了紧张实验,终于证明这种不带电的中性粒子质量和质子十分相近,中子终于被发现了。
查德威克因发现中子,1935年获得了诺贝尔物理奖。
中子被发现后,德国物理学家海森堡和苏联物理学家伊凡宁科都提出,原子核是由中子和质子组成的。这种模型圆满地解释了原子质量与原子序数的关系、同位素现象及原子核的自旋现象,很快得到了人们的公认。
骇人的原子能
早在1901年,居里夫妇就发现,含有镭的放射性物质,温度比周围环境要高,这表明,镭在衰变的过程中放出了能量。居里还对这种能量进行了测定,一克镭一小时释放的能量为136卡。初看起来,这个能量不大,但是它能日复一日、年复一年地释放,镭的半衰期是1617年,如果把一克镭一万年放出的热量加在一起,将是一克木柴燃烧时放出热量的60万倍,可见这个能量之大!
卢瑟福和索迪在研究放射性元素衰变时,也注意到了放射性发生时伴随着能量的产生,他们指出,这种能量来自原子的内部,不仅放射性元素,普通元素的原子中也蕴藏着巨大的能量,只不过放射性元素内部的能量缓慢地泄漏出来。
小小的原子中怎么可能会蕴藏着这样巨大的能量呢?它们是从哪里来的?这个问题不久就在爱因斯坦提出的质能转换公式中找到了答案。
1905年,爱因斯坦在研究相对论时提出了著名的质能转换公式:E=mc2,其中E表示能量,m表示质量,c代表光速,为3×1010厘米/秒。
这个公式告诉人们,质量和能量是可以相互转换的,质量是能量的密集形式,一点点质量就可以转换为巨大的能量,因为光速的平方是一个很大很大的数值。这样我们就不难理解原子中为什么会蕴藏有那样大的能量了。