书城科普读物站在巨人肩上-从法拉第谈磁物理学
28665100000016

第16章 基本粒子磁现象

电子磁矩

电子是发现较早的一种基本粒子,存在于原子核外。各种化学元素便是根据该元素原子的原子核中的质子数目,也就是该元素原子在非电离的正常状态下的原子核外的电子数目决定的。

原子中的电子磁性有由电子的自旋产生的自旋磁矩和电子环绕原子核作轨道运动产生的轨道磁矩。对于不处于原子中的自由电子说来,就只有自旋磁矩,是电子具有的内禀磁性,常简称电子磁矩。一般电子学只考虑运动电子的电荷所产生的电流,但是在20世纪末,由于现代磁学和高新技术的发展,诞生了磁学与电子学交叉的称为磁电子学、又称自旋电子学的新的交叉磁学或称边缘磁学。这样在磁电子学中电子电流和电子磁矩(自旋)都得到研究和应用。

电子磁矩研究的一项很重要又很有意义的成果是对电子磁矩的精密测量和理论计算。这表现在20世纪中期的30年研究中,对应用于电子磁矩与电子角动量关系的电子g因数的反常因数(简称g反常因数)α的精密测量和理论计算上。按早期的理论研究,g因素g=2,即g反常因数α=0,但是在长期的越来越精密的实验研究中却表明,α并不等于0,在1948—1978年的30年实验研究中,α的实验测量值从3位有效数字增加到10位有效数字。同时更值得注意的是,对g反常因数α的理论计算,在考虑了多种对电子磁矩的影响因素后,得到的理论计算值也达到10位有效数字和很高的精度(很低的不确定度)。还值得注意的是,g反常因数α的实验测量值和理论计算值在10位有效数字中竟有8位有效数字相同。总的说来,关于电子(自旋)磁矩的实验测量和理论计算达到这样高的有效位数,而实验测量值与理论计算值达到这样高的符合程度,在磁学和其他自然科学中都是非常罕见的。

中子的磁性

在基本粒子的磁现象中,又一个受到关注的问题是,为什么中子没有电荷却有磁性?而且其磁性还得到重要的应用。在一般情况下,磁现象与电现象总是同时存在,而且互相影响。例如,电荷运动形成的电流总要相伴地产生磁场,而磁场变化时又会由电磁感应产生电动势。

中子的磁性是怎样来的?从现代基本粒子结构的研究知道,中子并不是不可分的基本粒子,而是由3个更基本的夸克粒子(简成夸克)组成的。现在通过许多的实验和理论研究已经知道,共有6种夸克,称为上夸克、下夸克、奇异夸克、粲夸克、顶夸克和底夸克。夸克又称层子,表示物质是由许多层次的基本粒子构成的,层子是其中一个层次的基本粒子。每种粒子又都有其电荷和磁矩。中子是由1个上夸克和2个下夸克组成的,而每种夸克各有其电荷和磁矩,这样使中子的总和电荷为零,而总合磁矩却不为零,因为中子是一种具有强相互作用的强子,同由强子、质子和中子构成的原子核有强相互作用,因而可利用来测量晶态物质的原子(含原子核)的分布状态的晶体结构,称为中子衍射晶体结构分析。又因为中子具有磁矩而没有电荷,可利用中子磁矩同晶态物质的原子磁矩的磁相互作用来测量晶态物质的原子磁矩的分布状态(称为磁结构),并不受物质中电荷的影响,称为中子衍射磁结构分析。这样便可以利用中子衍射同时进行晶体结构分析和磁结构分析。

磁单极子

一般看来,磁的来源总是同电相关的,即由电的运动(电流)产生磁场,而且产生物质磁性的磁矩也是同自旋和电荷相联系的。这样磁矩的两个磁极(北极和南极,或称正磁极和负磁极)便是不能分开和分离存在的。这同物质的电性是很不相同的。因为电性中既有电矩(带有正电极和负电极)的存在,也有分开的正电荷和负电荷的存在。这样就造成了磁和电的不对称,使描述电磁现象的麦克斯韦电磁方程组也显得不对称,例如电通密度的散度为电荷密度,而磁通密度的散度却为零,因为只有磁矩,没有分离的磁荷(磁极)。但是获得1933度诺贝尔物理学奖的英国物理学家狄拉克在1931年提出了磁单极子理论。这位物理学家既在创建相对论性量子电动力学理论上有过重要贡献,而且还有先提出了反物质学说、磁单极子学说和基本物理常数随时间变化学说,其中反物质学说已在实验上得到证实,并成为阿尔法磁谱仪的重点研究对象。而磁单极子学说自从1931年提出以来,到现在一直受到实验观测和理论研究的重视。这是因为磁单极子问题不仅涉及物质磁性的一种来源,电磁现象的对称性,而且还同宇宙极早期演化理论及微观粒子结构理论等有关,故成为科学界关注的一个重要问题。例如在实验观测方面,曾利用多种高能加速器进行许多实验,但都未能产生出磁单极子;曾对地球古代大陆岩石和海洋底岩石、从天外降落到地球上的各种陨石、从月球带回地球的月球岩石等进行观测也未观测到磁单极子及其留下的特征径迹,曾利用高空气球和空间飞行器上的粒子探测器探测磁单极子,在很多次探测中仅观测到一次的粒子径迹,经多方面分析研究,认为很可能是磁单极子的径迹,但至今尚未得到重复认证;还曾多次在地面实验室中利用高灵敏度和高磁屏蔽的超导量子干涉仪(SQUID)式磁强计进行磁单极子的探测,进行了长达151天的日夜不停的磁单极子探测,仅有一次观测结果经仔细分析研究,排除了多种干扰,认为是一次磁单极子事例,但是后来虽然经过多次重复探测,并且改进和增大了测量装置,提高了测量灵敏度,但是都未能再观测到磁单极子。总的说来,几十年来经过多方面和大量的关于磁单极子的实验观测,虽然曾有过两次可能是磁单极子的观测事例,但都尚未能得到重复的证实。

在磁单极子的理论研究方面,也曾提出过多种的学说,各有其特点和根据。例如,除狄拉克最早提出的磁单极子学说外,还有:磁荷和电荷完全对称并具有新的量子化条件的全对称磁单极子学说;由著名华裔物理学家、诺贝尔物理学奖获得者杨振宁教授等提出的采用纤维丛新数学方法的量子力学磁单极子学说;应用统一规范场理论的规范磁单极子学说;应用爱因斯坦-麦克斯韦耦合场的相对论性耦合场磁单极子学说;应用超弦理论和四维规范模型的超重磁单极子学说;超对称和超弦磁单极子学说等。

总的看来,涉及磁学、电磁对称、宇宙早期演化和微观基本粒子结构等多方面的磁单极子问题是仍需要从实验观测和理论方面继续进行研究的科学问题。

生物也有磁性吗?这些磁性还有重要的应用吗?这好像是很难理解的。通过现代科学的大量和广泛的观测、实验和理论研究,表明包括人在内的生物体不但具有磁性和产生磁场,而且这些磁性和磁场对于生物还有着重要的使用。

地球磁场是人类生活离不开的一种环境因素。在前面介绍古代磁的发现、发明和应用方面的贡献,在这里将介绍的地球磁场在地球演化、生物活动和人类生活等方面的作用,都将认识到地球磁场和相关的地球磁现象的重要。但是这方面的内容也是十分丰富的,我们也仅能在这里介绍一些典型和重要的例子,即分别介绍了地球磁场的变化及其应用,地球磁场的反向,古地球磁场的变化研究及其重要应用,地球磁场的起源。这里还要说明一下,我们在这里介绍的不仅有一般的地球磁(场)现象,而且还将介绍岩石磁现象,古地磁现象等以及它们的应用,地球磁场的来源和演化等。地球磁场一般也简称地磁场。地磁学一般仅指关于地磁场的测量和研究,但是地球磁学就包括地磁学、岩石磁学、古地磁学和地球磁场的起源和演化。

宇宙磁现象是指地球以外的各种星体和星体之间的星际空间的磁现象。宇宙磁现象所涉及的空间范围和时间尺度都远超过地球。因此在这里只能选取其中一部分大家可能更为关心和更感兴趣的宇宙磁现象,如阿尔法(α)磁谱仪上天(空间)探测、“阿波罗”飞船登月测月磁、太阳磁活动与太空气象学、脉冲星与超强磁场。

基本粒子是构成原子和原子核的更小和更深入一层的粒子。但因随着科学研究的深入和进展,原来看作是基本粒子的也由更深层次的粒子的发现而变为非基本粒子了。例如,历史上曾经把原子、随后又把原子核看作是基本粒子,但是后来更进一步的研究表明,原子和原子核都不再是基本粒子。因此把基本粒子称为粒子。这里为了避免一般的误解,把基本粒子同常用的材料粒子和颗粒等相混淆,仍采用“基本粒子”一词,只是要理解“基本”是随着历史和科学进步而改变的。从当代科学研究和应用看,基本粒子的磁性研究和应用也是很广泛的。这里我们只介绍其中的一部分:电子磁矩的精密测量和理论计算,中子没有电荷却有磁性,磁单极子的探测和理论研究,夸克粒子和超子的磁性等。更多的相关知识还要读者自己去挖掘和探索。