书城童书科普知识百科全书——《时间知识篇》(下)
24367400000004

第4章 形形色色的钟(4)

医生检查听力的时候,用一个小锤子敲的那个东西就是音叉。医生把用小锤击过的音叉放在患者的耳边,在一段时间内,患者耳边就响起持续的“嗡嗡……”的声音,这说明音叉产生了振动。如果音叉是用受温度影响很小的金属材料制成的,这种振动就是很稳定的。

当然,用来制造“音叉式电子手表”中的音叉,要比医生手里拿着的音叉小得多了,音叉式电子手表是怎样工作的呢?电池向振荡器供电后,振荡器就发生了振荡,电感线圈的磁场和固定在音叉两臂顶端的磁钢相互作用,驱动音叉振动起来,它的振动频率反过来又去控制振荡器的振荡频率,使整个振荡系统的振荡频率主要决定于音叉的振动频率,这就是所谓的稳频作用。音叉的一个臂伸出一个推爪,音叉振动时,它就推动计数轮,使整个齿轮系统转动起来,带动指针走动。

在音叉式电子手表中,已经割掉了传统的游丝、摆轮系统的尾巴,向着更高一级的方向发展,走时精度也相应地提高了,每天误差在5秒以内。

第三代电子手表是指针式石英手表。

音叉式电子手表的走时精度是提高了,但是它仍不能满足人们对精确时间的要求,人们开始采用更为理想的稳频元件——石英晶体。石英晶体具有十分稳定的物理和化学性能,它的稳频效果极佳。

第三代电子手表主要是由微型电池、石英晶体、集成电路、微型马达和齿轮、指示系统构成的。

石英晶体作为振荡电路中的一个稳频元件,接通电源以后和集成电路一起形成振荡,产生一个非常稳定的3Z佃赫兹的信号,也是通过集成电路将它变换成每秒振荡一次(1赫兹)的信号,并放大到足够强度,推动微型马达,带动齿轮、指针转动。

第四代电子手表仍然用石英晶体作为稳频元件,但它的机械结构已经减到了最少程度,连传统的齿轮、指针都不见了。代替齿轮的是集成电路,代替指针的是发光二极管或其他显示元件。人们称第四代电子手表为“数字显示石英手表”。

在人类制表的历史上,由于用了石英晶体作为稳频元件,又采用集成电路,使手表的制造发生了重大变革。石英手表是当前世界上走时精度最高的手表,每天误差只有0.1秒,1年还不超过半分钟。同时,它能自动走时,使用方便,形式新颖、美观、大方,使得它的钟表伙伴们相形见拙。

目前,电子手表正在向着高精度、薄型、小型、多功能方面发展。有些电子手表的功能竟达20种之多,除了显示时、分、秒,日、周、月外,还能显示出世界时,有的还能作为闹表、跑表使用。

在能源方面,现在人们已经研究出了光电池和太阳能电池,用来代替原来的微型电池,并且正在研究用人体体温作为电子手表新能源的途径,这是一种更为方便、更加实用的方法。

三万年差一秒的钟——原子钟

当今,我们不仅有了300年差1秒的晶体钟,还有了更高级的原子钟呢。比如铯原子钟,它看上去是一个方方正正的不算大的机柜,上面布满了各种开关、旋钮、红绿指示灯……要不是看到上面几个显眼的大字“铯束管原子钟”,根本就不会相信这是一台钟,因为它和普通的钟表比起来,已经是面目皆非了。

铯束管原子钟及其他各种类型的原子钟,都是用“原于跃迁”的频率来计时的,这个频率很高并极其稳定,所以它的计时精度也非常高,可达3万年差1秒!上面我们讲过的晶体钟虽然已经很精确,但它有老化漂移等现象,因此还不能作为1级时间频率标准,而原子钟才是目前世界上公认的1级时间频率标准。

原子钟可真棒,3万年才差1秒,多准啊!

随着人类的认识向着微观世界发展,揭示了原子的秘密以后,又给人类计时提供了更精确的方法,因为微观世界的稳定性远远超过了宏观世界。

在宏观世界中没有完全相同的个体,一对孪生兄弟,看起来十分相似,但仔细观察,就可以找出它们的差异来;同一厂家用同样的元器件生产的电视机,外观一模一样,但质量却各有优劣。

在微观世界中则恰恰相反,有着许多完全相同的东西,我们不能把一个电子和另一个电子区别开来,我们也不能把同种元素的一个原子与另一个原子区别开来。这并不是由于我们的测量仪器过于粗笨,而是它们的确完全相同,原则上无法把它们区别开来。即使在地球深部的高温高压下,也不能改变它们的性状。

所有计时方法和计时工具,都是基于物体有规律的变化。如地球绕太阳1年旋转1周,地球1天自转1周,普通手表每秒摆轮摆5次,晶体钟每秒振荡枷万次,而原子钟是用原子的“振动”来计时的,它每秒钟振动竟达几十亿次。计时频率的提高,本身就意味着计时精度的提高。

从印年代原子钟问世以来,到现在已经发展成一个“家族”了。有最初的氨分子钟、有铷原子钟、铯原子钟,还有氢原子钟……每种钟又有不同的类型。

原子钟虽然多种多样,但它们的工作原理却是基本相同的。都是利用了原子跃迁的周期稳定这个特点。

三百年差一秒的钟——晶体钟

有了高稳定晶体振荡器,像在电子手表中一样,只能说有了一个高级的“电子摆”,它本身并不能构成一个完整的钟。

高稳定晶体振荡器的振荡频率一般为每秒2田万—枷万次,每一个振荡周期只有几百万分之一秒,即零点几微秒,这样小的时间刻度,对无线电技术和时间频率的计量来说,已是很精确、很方便的了,但对于我们传统的时、分、秒的计时观念来说,这样的时间刻度又嫌太小。

假如我们能够对晶体振荡器的标准信号加以变换,使其分别产生每秒振荡一次、每分振荡一次、每小时振荡一次的信号……频率越低,周期越长,这样就和我们日常所用的钟表一一对应起来。再将这些低频信号通过数字形式或机械形式显示出来,这就构成了一个由晶体振荡器决定稳定性的标准时钟——晶体钟了。

现代电子学的发展,使人们很容易实现上述的设想。晶体钟早已制造出来了,早在1927年,美国贝尔电话实验室马里森第一个研制出晶体钟,用来计量时间;1933年,东京天文台首先装备了晶体钟,用来保存准确的时间。发展到现在,晶体钟在各个领域得到了更加广泛的应用,无论是在计量局的标准室里,还是在广场的高大建筑物上,或是在体育比赛的大厅里,我们都可以发现晶体钟的“踪迹”。虽然它们的计时精度要求各不相同,但它们的基本工作原理都是一样的。

晶体钟一般是由下列几部分组成的。高稳定晶体振荡器将5兆赫(或2.5兆赫)标准信号送给第一个分频器,分频5×106次,得到每秒一周的信号,即“秒”信号;再通过第二个分频器,分频印次,就得到每60秒一周的信号即“分”信号;再经过第三个分频器,继续分频印次,就得到每3600秒一周的信号,即“时”信号。将分出的秒、分、时信号送到译码显示电路,就可以以数字形式显示出××时、××分、××秒来,和石英手表一样读起来非常方便。现代的数字显示方法多种多样,有数码管显示,发光二极管显示、液晶显示及等离子显示等。显示的颜色有红的、橙色的、绿色的……数字闪烁跳跃,十分直观好看。

光是这样还不够,我们可以想象到,如果振荡器不断地输出标准信号,时间一分一秒地积累起来,就会出现“25时××分××秒”的情况,时间再长会出现35小时、48小时……的情况,这就和我们实际应用产生了差异。所以还必须加上一套调整电路,当时间积累满34小时后,使整个系统完全恢复到零位,计时再重新开始,这就是“复零电路”的作用。正像我们常用的钟表一样,指示的最大数值是12点,过了12点以后,指针的读数又重新开始了。

如果我们用频率变换的方法,将得到的秒信号驱动一个机械装置——同步钟,一个秒信号使同步钟的秒针跳动一次,并带动分针、时针,这就构成了一个机械指示的晶体钟,这跟我们日常用的钟表就更相似了。

讲到这里,需要特别指出,在信号变换过程中,并没有改变高稳定晶体振荡器的稳定度,得到的时、分、秒信号的稳定度仍然可保持在10-10量级。从这个意义上来说,高稳定晶体振荡器就相当于普通钟表里的“机械摆”,它是稳频的关键部件,所以有人管它叫做“晶体钟摆”,也是有一定道理的。

如果1台晶体钟的稳定度是1×10-10,那么它相当于多少年差1秒呢?相当于317年差1秒,通常我们就说成3印年差1秒。这样的钟多准啊!如果我们每一代人按30年来计算,那么3印年就整整是10代人的时间!这就是说,我们上溯10辈的先祖对准的钟表,走到现在,只不过才差上1秒钟!

长时间间隔的测量——放射性“时钟”

1973年4月,修建雄伟壮观的北京饭店新楼时,在工地下约13米深处发现两株古木,1株略有腐朽,材质松软,另1株已经炭化,质地坚硬。经过科学院考古研究所的测定,这两株古木距今已有30000年之久……古木静静地埋在地底下,历史文献上不可能找到关于两株普通树木的记载。千百万年前,更不可能有人在它们旁边放置一个时钟,而且,迄今为止,我们所发明的普通钟表、晶体钟以及原子钟,还没有一种能够工作千百万年之久。那么,科学工作者是怎样测定这两株古木年龄的呢?

大家知道,我们在生活、生产和科学实验等项活动中,不仅需要计量极短的时间,像前面讲的那样,有的短至亿万分之一秒的时间间隔;而且也需要计量长达千、百、万、亿年的时间间隔。比如考古工作者要测量历史文物的年龄,以至于人类的起源。又比如地质工作者要研究各种地层形成年代,甚至于地球本身是什么时候形成的;天文工作者要研究太阳及其他恒星有多少岁……这些都是摆在科学工作者面前的重要课题。要决定这两株古木年龄的问题,只不过是这样许许多多的问题中的一个。

科学工作者用什么方法来测量这么长的时间间隔呢?现代的各个科学领域都是互相交错、互相渗透、互相促进的,首先解决这些问题的,不是考古学家,不是地质学家,也不是天文学家,而是放射化学家。

放射化学家研究出一种独特的时钟。这种时钟既不需要定期地上紧发条,也不需要经常维修保养,但它却能测量极长的时间间隔。这种钟是利用放射性原理来计量时间的,我们管它叫做“放射性时钟”。