公元前337年,马其顿国王腓力二世用武力征服了希腊各城邦。次年亚历山大即位,在很短的时间内,他继承父业,开创了一个横跨欧、亚、非三大陆的马其顿王国。在地中海沿岸的尼罗河三角洲上,亚历山大建立了以他名字命名的城市——亚历山大城,并把它作为这个庞大帝国的文化、商业和工业中心,同时也是科学思想的中心。这儿有称誉世界拥有70万卷藏书的图书馆,还有博物馆、天文台和闻名天下的博学园,成为当时欧洲乃至世界数学的中心。欧几里得就是被亚历山大的后继者——托勒密一世重金聘请到博学园的教师。
欧几里得本人始终是个难解的秘密。无人知道他的生死年月和诞生地,惟一可以确定的是他在托勒密一世(公元前305年至公元前285年)执政期间在亚历山大城工作过。根据一些间接的记载推测,欧几里得早年可能在雅典接受过教育,而且曾就学、工作于柏拉图学院,因此熟知希腊的数学知识。
古籍中记述了两则故事说明了欧几里得的治学态度。一个故事说:有一天,托勒密国王问欧几里得,除了他的《几何原本》之外,有没有其他学习几何的捷径。欧几里得回答道:“几何无王者之道。”意思是在几何学里,没有专门为国王铺设的大路。这句话后来被引申为“求知无坦途”,成为千古传诵的箴言。另一个故事说:一个学生才开始学习第三个几何命题,就问学了几何之后将得到些什么。欧几里得说:“给他三个钱币让他走吧,因为他只想在学习中获取实力。”从古籍记载的这两则故事可知,欧几里得主张学习必须循序渐进、刻苦钻研,不赞成投机取巧、急功近利的作风。
欧几里得是一个杰出的科学家,他标志着当时的科学中心从雅典过渡到了亚历山大城。欧几里得的名字与几何学是不可分割的,因为他写了一本几何教科书《几何原本》,此书至今还是几何学的权威著作,当然也经过一些修改。印刷术发明后,出过一千多版。“我学了欧几里得”就是“我学了几何学”的同义语,这句话并非很久以前说的。所以,欧几里得是最成功的不朽的几何教科书作者。然而欧几里得作为一位数学家的盛名,并非由于他本人的研究成果。在他书中,只有极少的定理是他自己创立的。他所做的一切,以及使他成为伟大的数学家的,就在于他利用了泰勒斯时代以来积累的数学知识,把两个半世纪的劳动成果条理化、系统化,并且编纂成了一本著作。在编写此书时,他一开始就推出一系列令人钦佩的简要而精致的公理和公式。然后他将定理一一排列,其逻辑性非常强,几乎无须改进。
历来公认归功于欧几里得本人的惟一定理,就是他为毕达哥拉斯定理提出的证明。虽然他的这一伟大论著主要涉及几何学,但也提出了比率和比例的问题,以及现在为大家所知的数论问题,正是欧几里得证明了素数是无限的。他还通过一系列干脆利落至今尚未作过任何改进的论证,证明了2的平方根是无理数。他还通过将光视为直线,使光学成为几何学的一部分。当然欧几里得并没有概括希腊的全部数学,甚至也没有概括全部几何学。继他之后,希腊数学在相当长时期内,一直生气蓬勃,像阿波洛尼乌斯和阿基米德等人,都为数学增添了一大笔财富。
后来的哥白尼、开普勒、伽利略、牛顿这些卓越的科学人物,统统都接受了欧几里得的传统。他们都认真地学习过欧几里得的《几何原本》,并使之成为他们数学知识的基础。欧几里得对牛顿的影响尤为明显。牛顿的《数学原理》一书,就是按照类似于《几何原本》的“几何学”的形式写成的。自那以后,许多西方的科学家都效仿欧几里得,说明他们的结论是如何从最初的几个假设推导出来的。许多数学家,像伯莎德·罗素、阿尔弗雷德·怀特海,以及一些哲学家,如斯宾诺莎也都如此。
除《几何原本》外,欧几里得还有不少著作,如《已知数》、《图形的分割》、《纠错集》、《圆锥典线》、《曲面轨迹》、《观测天文学》等,可惜大都失传了。不过,经过两干多年的历史考验,影响最大的仍然是《几何原本》。