书城科普读物玄奥神秘的数学王国(新编科技大博览·B卷)
10478900000018

第18章 数学与生活(2)

现在请你自己来安排一次乒乓球比赛,报名参加男子单打的有158人,报名参加女子单打的有96人,应该进行多少场比赛?怎样安排这些比赛呢?

用单循环制进行的比赛场数的计算

用淘汰制进行球类锦标赛,比赛场数比较少,所需用的时间较短,所以,报名人数较多的个人锦标赛往往采用这种方法。但有一个缺点,就是要获得冠军,中途不能有失。而且如果两强相遇过早,所产生的亚军和其他名次往往与实际水平不完全相符。因此,在报名单位较少的一些团体锦标赛中,往往不采用淘汰制而采用另一种比赛方法——循环制。

用循环制进行的比赛场数应该怎样计算呢?下面我们来看一个例子。如果你所在的学校有15个班级,每个班级有1个球队参加比赛,若用单循环制进行,一共要比赛几场?

如果用单循环制进行比赛,每一个队要和另一个队比赛一场,所以在15个球队中,每一个队伍要进行14场比赛,15个球队就有15×14场比赛。但每场比赛是两队互相交锋的,因此,这样计算就把一场比赛算做两次了,而实际的比赛场数是15×142=105(场)。

我们再来看看世界杯足球赛的例子。98世界杯足球赛有32支参赛球队,如果始终采用单循环制进行比赛,那么一共要进行的比赛场数是(32×31)÷2=496(次)。

一般说来,单循环制的比赛,如果有n队报名,那么,比赛的场数总共是:

n×(n-1)2

但是这样安排场次太多,费时太长。因此,许多比赛采用的不完全是单循环制,而是分组双轮单循环制。下面我们来看,如果把15队分成三组,每组5队,采用分组双轮单循环制,一共要比赛几场?

在这三组中用单循环制进行比赛,产生三个分组冠军,这三队再进行第二轮的单循环赛,产生冠亚军。这样:

第一轮是5×42+5×42+5×42=30(场);

第二轮是3×22=3(场);

比赛的总场数是30+3=33(场)。

再来看98世纪杯足球赛的例子,32支参赛队分成8个组,每组4个队。如果按照分组进行双轮单循环赛,那么,第一轮要比赛4×32×8=48(场),产生8个分组冠军;第二轮,这8个队再进行(8×7)÷2=28(场)比赛,决出冠亚军。

现在请你用同样的方法来安排一次乒乓球赛,报名参加男子团体赛的有26个队,报名参加女子团体赛的有19个队。如果用单循环制进行比赛,要安排几场比赛?如果各分成三组,男子两组各9队,一组8队,女子两组各6队,一组7队,采用分组双轮单循环制,一共要比赛几场?事实上很多比赛会同时采用这两种比赛方式——淘汰制和单循环制。例如98世界杯足球赛,先是32支球队分成8个组,采用分组单循环制,进行48场比赛,每组的冠亚军共16支球队,再采用淘汰制,进行8场比赛,决出前8强。再用淘汰制,进行4场比赛,决出前4名。还是用淘汰制,进行2场比赛,决出前2名。最后前2名争夺冠亚军,另外还安排一场决出3、4名的比赛。这样比赛场数总共是48+8+4+2+1+1=64(场)。

池塘中的芦苇有多高

陈明和张红、方华在昆明湖中划船,岸边有一棵芦苇露出水面。这棵芦苇有多长呢?这里水有多深呢?小明捉摸了一会,拿出尺来量了量芦苇露出水面的长度是11厘米。芦苇离岸边的距离是3米零1厘米,他又扯着芦苇顶端引到岸边,芦苇顶正好和水面相齐,陈明高兴地说,我可以算出芦苇的长度和水深。张红和方华感到奇怪:你怎么会算的呢?陈明说:“我叔叔有一本《九章算术》,那是汉朝的著作,离现在快两千年了。前天晚上,叔叔给我讲了其中一个题目,就是计算芦苇长度的。”接着,陈明给他的小伙伴讲了这个《九章算术》勾股章的第六题。题目是:

“有一个方池,每边长一丈,池中央长了一棵芦苇,露出水面恰好一尺,把芦苇的顶端引到岸边,苇顶和岸边水面刚好相齐,问水深、苇长各多少?

设池宽ED=2a=10尺,C是ED的中央,那么,DC=a=5尺,生长在池中央的芦苇是AB,露出水面的部分AC=1尺,而AB=BD,设BD=c,水深BC=b,△BDC是一个勾股形。显然AC=AB-BC=c-b=1尺,AC的长等于勾股形中弦和股的差,称为股弦差。于是,问题就变了:已知勾股形的勾长和股弦差长,求股长和弦长。

由勾股定理得

a2=c2-b2

那么,

a2-(c-b)2=c2-b2-(c-b)2

=c2-b2-(c2-2bc+b2)

=2bc-2b2

=2b(c-b)

所以

b=a2-(c-b)22(c-b)(1)

c=b+(c-b)(2)

将a,c-b的数值代入(1)、(2)两式,很容易求出水深b=12尺,苇长c=13尺。《九章算术》用非常精练的语言概括了这个解法:

半池方自乘,以出水一尺自乘,减之,余、倍出水除之,即得水深。加出水数,得葭(苇)长。

这段话翻译成数学语言就是(1)式和(2)式。

怎样渡河才更好

暴风雨过去了,一支巡回医疗队来到河边,哪知木桥已被洪水冲断,怎么办呢?正在焦急的时候,忽然看见一条小船向这边驶来。

“啊,太好啦!村里两个少先队员来接我们啦!”大家高兴极了。

可是,这条船实在太小,它只能承载两个孩子或者一个大人。

“怎样才能全部渡到对岸去呢?”大家都在沉思着。

聪明机智的少先队员,很快想出了渡河方案,巧妙地把大家全部渡到对岸,是怎样一个方案呢?

首先,两个少先队员把船划到对岸。

接着,他们之中一个留在对岸,另一个划回来。

这个少先队员上岸,一个医疗队员划过去。医疗队员上岸,留在对岸的少先队员划回来。

这时,一个医疗队员已到对岸,而两个少先队员却都回到这边来。整个过程这样重复下去,直到每一个医疗队员全都渡过河去为止。

这里渡河的程序是何等重要,先怎样,后怎样,再怎样,必须按一定的次序。

抽屉原则

现在有五本书要放到四个抽屉里去,放法是很多的,有的抽屉可以不放,有的可以放一本,有的可以放二本、三本、四本甚至五本。但是,不管怎样放,至少可以找到一个至少放有两本书的抽屉。

设每一个抽屉代表一个集合,每一本书代表一个元素。假设有n+1或比n+1多的元素要放到n个集合里去,毫无疑问,其中必定至少有一个集合里至少放进两个元素。这就是“抽屉原则”的抽象涵义。

现在我们班上有54个同学。我说,这54个同学中至少有两个人是同一个星期出生的。你一定会惊奇,我怎么会知道的呢?这很简单,按照我们学校目前招生的情况,学生们的生日不会相差一年,因为一年之中只有53个星期,现在学生有54人,我们运用抽屉原则的知识,把星期作为抽屉,学生作为书本,那么,这53个抽屉里,至少有一个抽屉放进至少两本书的,也就是至少有两个同学在同一星期出生。这不是很容易解答的吗?

一般的情况,书本的数目并不一定比抽屉数目多1,可以更多一些,例如多6本、7本放到四个抽屉里。如果更多呢?例如21本书放到4个抽屉里,道理也是一样,也就是无论怎样放法,至少可以找到一个抽屉里至少有6本书。这样的情形,即把(m×n+1)或比(m×n+1)多的元素放到n个集合里,无论怎样放法,其中必定至少有一个集合里至少放进m+1个元素。

我们来试试看,假设在一个平面上有任意六个点,无三点共线,每二点用红色或蓝色的线段连起来,都连好以后,能不能找到一个由这些线段构成的三角形,它们的三条边是同一颜色的?

我们可以随便选择其中任何一点,可以看到这一点到其他五个点之间连接了5条线段,这5条线段中,至少有三条是同一颜色,假定是红色。现在我们单独来看这三条红色的线段吧,这三条线段的另一端不是也有不同颜色的线段连接起来构成三角形的吗?假如其中有一条是红色的,那么,这条红色的线段和其他原来连接的两条红色线段就组成了一个我们想要找的三角形。假如这三条都是蓝色的呢,那么,这三条蓝色线段本身组成的也是我们想要找的三角形。所以,无论你怎样着色,在这任意六个点之间所有的线段中至少能找到同一种颜色的一个三角形。

假设在一场乒乓球赛中,从所有的队员里任选六个人,你能证明他们当中必然有三个人互相交过手,或者彼此没有交过手吗?

用什么方法挑选自己满意的商品

我们经常会遇到这样的情况:购买商品时,同样的商品有很多,怎样挑选出最满意的一个来呢?当然,营业员不可能把所有的商品都拿出来任你挑选,我们也就没有多大的挑选余地,但如果摆在你面前的商品有很多,你该如何挑选呢?又譬如说生产厂家要从自己的产品中,挑选一个最好的去参加评比,怎样从众多的产品中挑选呢?

所谓满意的标准有很多,对于顾客来说,商品的好坏大致有三个标准:一是商品的质量,二是商品的外观,三是商品的价格。而这三者往往不容易完全兼顾,顾客的心理也有差异,有人对外观的要求较高,而有人则更看重价格。这里,我们假定顾客心中已经有一定的标准,能够从两件商品中区分出好坏。

现在假定有n件商品供你挑选。一般的方法是采取两两比较,先对其中两个进行比较,再换两个进行比较,如此一直下去,直到最后选出最优的一个来。作两两比较,人们总是希望比较的次数越少越好,那么从n件商品中选出一个最优的至少要比较多少次呢?为了叙述方便,我们把这个次数记为f(n)。

如果n=2,即从两件商品中挑选一个最优的,只须进行一次比较就可以了。因此,f(2)=1。

如果n=3,可以先对其中两件商品作比较,选出的优胜者再与另一件相比,选出最优的,因而只须进行两次比较,即f(3)=2。

下面,我们来看一般情形,n件商品,我们先任取两件作比较,选出一个再与下一个相比,如此继续,到最后一件,那么一共进行的比较次数是n-1次。这一方案所用的比较次数一定不比f(n)小,有f(n)≤n-1。

现在我们假设已经有一个方案,只需进行f(n)次比较。那么,第一次比较总是从其中的两个开始的,淘汰掉一个之后,优胜者与其他n-2件的最少比较次数是f(n-1),而原方案去掉第一次比较剩余的比较方案恰好是n-1件商品选优的一种方案。于是,有f(n)-1≥f(n-1),即f(n)≥f(n-1)+1≥f(n-2)+1+1≥f(n-3)+3≥…≥f<n-(n-2)+n-2=f(2)+n-2=1+n-2=n-1前面已知f(n)≤n-1,现又有f(n)≥n-1,于是,f(n)=n-1。也就是说,从n件商品中挑选出一个最优的,至少要作n-1次比较。前面我们已经给出了一个作n-1次比较的方案,当然也还有其他的最佳方案。比如说,我们可以把商品先分成若干个组,在组内先进行比较,然后每组的优胜者再拿到一起作比较。

下面我们来看如何从n件商品中挑选两个最优。我们只要求能找出两个最满意的商品,而不需要在两个商品中再区分最优。这时最少的比较次数是多少呢?我们先从n件商品中选出一个最优来,最少的比较次数是n-1,去掉这个最优,再从剩下的n-1件商品中选出一个最优,最少进行n-2次比较,这时我们保证了这两件商品确实比其他n-2件商品更优。由于不需要区分冠亚军,所以在这2n-3次比较中,我们还应去掉一次冠亚军之间进行的比较,于是我们最少的比较次数是2n-4。那么,这些比较又如何进行呢?这一问题我们留给读者自己去思考。

怎样巧算圆木堆垛

在货栈或仓库里,物品的码放都是很有次序的,这样不仅整齐美观,取用方便,而且也易于统计。

有一堆长短粗细相同的圆木堆放在露天仓库里,按以下规律排列:最下边一层是10根,以后每一层比下一层少一根,最上边一层是1根,这堆圆木一共有多少根?

有的同学说,圆木堆垛的横截面是一个三角形,底层是10根,高是10层,列式为:10×10÷2=50(根),这堆圆木共50根。

也有同学说,圆木堆垛的横截面是一个梯形,下底层是10根,上底层是1根,高是10层,列式为:(10+1)×10÷2=55(根),这堆圆木共55根。

这两个答案哪个对呢?让我们来分析一下。

假如你在这堆圆木旁边,再并排地放上同样的一堆,只是上下倒置。这时,这两堆圆木合成的圆木堆,每一层的根数,恰好是底层与顶层根数的和,底层是10根顶层是1根,每一层的根数是10+1=11(根),一共是10层,11×10=110(根),这110根是两堆圆木的总根数,原来的这堆圆木的根数就是这两堆圆木总根数的一半,110÷2=55(根)。由此说明,认为“这堆圆木共50根”的答案是错误的。错误的根本原因在于,不应该把圆木堆垛的横截面看成为三角形,虽然它的上底很短,数值很小,是“1”,但它毕竟不是“0”,只有当梯形的上底逐渐缩短,数值成为“0”时,梯形才转化成三角形了。

一般的计算公式是:

(底层根数+顶层根数)×层数2

</n-(n-2)+n-2=f(2)+n-2=1+n-2=n-1前面已知f(n)≤n-1,现又有f(n)≥n-1,于是,f(n)=n-1。也就是说,从n件商品中挑选出一个最优的,至少要作n-1次比较。前面我们已经给出了一个作n-1次比较的方案,当然也还有其他的最佳方案。比如说,我们可以把商品先分成若干个组,在组内先进行比较,然后每组的优胜者再拿到一起作比较。