书城科普读物蔚蓝旖旎的海洋(新编科技大博览·B卷)
10478500000031

第31章 海洋开发篇(5)

开采锰结核的难度极大。首先,它分布在深海的海底表层,那里的海水压力很大,对采矿装置的抗压性、牢固性和耐腐蚀性等都有特殊的要求。其次,要把锰结核从几千米深的地方采集起来并提升到海面,没有高功率的提升装置和先进的采矿设备是无法操作的。此外,为了提高采矿效率,还必须配备精度高、性能可靠的监测、显示、记录和控制系统。所以世界各国至今开采锰结核的方法还未成熟。目前一般认为有3种方法比较适用:

一是,水力提升式采矿系统。它主要由采矿管、浮筒、高压水泵和集矿装置4部分构成。采矿管悬挂在采矿船和浮筒下,起运送锰结核的作用。浮筒安装在采矿管的上部,筒内充以高压空气,靠它的浮力支撑高压水泵的重量。高压水泵装置设在浮筒内,通过高压使采矿管道内产生每秒5米高度的上升水流,使锰结核和水一起由海底提升到采矿船内。采矿装置的作用,则是筛选、采集锰结核。这种开采系统经过不断改进,现已达到日产500吨的采矿能力。

采矿船从海底挖掘出来的锰结核二是,空气提升式采矿系统。它由高压气泵、采矿管、集矿装置等组成。高压气泵安装在船上,采矿作业开始时,首先在船上启动高压气泵,气泵产生的高压空气通过输气管道从采矿管的上、中、下三个部位输入采矿管,使采矿管道内产生由固体、气体、液体三种物质组成的高速上升流,将经过集矿装置筛滤系统处理过的锰结核提升到采矿船内。目前这种采矿系统已具有提取5000米深处、日产300吨锰结核的能力。

三是,连续戽斗式采矿系统。在高强度的聚丙二醇酯绳链上,每隔25~50米安装一个采矿戽斗。采矿时,船上的牵引机带动绳链,通过绞车滑轮使戽斗在海底循环翻转,不断地挖取锰结核,并连续向上提升,将矿石卸到船上,随后进行筛选和清除泥沙。这种采矿系统经过大量试验,证明它具有结构简单、适应性强、采矿成本低等优点。其缺点是,采矿效率低,作业时难以准确控制开采区。

一般认为水力提升式和空气提升式采矿系统较为理想,它们的集矿装置,有的采用射流吸入,有的采用机械扒取,有的甚至装有最先进的带螺旋桨的自动控制机械集矿装置。

除了上述3种采掘方法以外,目前一些国家还研制成一种海底自动采矿技术。这种技术主要是利用遥控潜水器潜至海底采集锰结核,然后自动上浮,把采集到的矿石卸到采矿平台上。这种深潜开采虽然比较先进,具有一定的开采深度,但它每次的采集量有限,且沉浮时间太长,因而经济上远不及上述3种开采方法。目前,深潜开采法主要应用于大量开采前的取样、试采阶段。

开采海底可燃冰

20世纪70年代以来,人们陆续在世界各地的海洋深处发现了一种以前从未给予充分重视的新能源——可燃冰。猛听这一名词,你一定会感到奇怪!冰,怎么会可燃呢?其实,可燃冰是指水与天然气相结合后形成的一种晶体物质,学术上称为“天然气水化合物”。据测定,1立方米固体可燃冰,约含200立方米天然气。所以可燃冰具有很强的燃烧能力,是一种十分重要的能源资源。

可燃冰的发现是出于一次偶然机会。在20世纪30年代,人们为了输送天然气,开始敷设巨型的天然气管道。结果发现,管道经常发生堵塞。将管道剖开一看,原来是被冰一样的物质所封堵的。管道中怎么会有冰呢?经过研究才知道,原来它是天然气与水的结合物,具有很强的燃烧能力。

可燃冰大量贮存于冻土层中和海底,其中以海洋深处蕴藏量最为丰富。在海底,可燃冰常可形成长达数千千米,厚度从数厘米到200~300米不等的巨大矿床。在美国、加拿大等沿海地区,已查明蕴藏有数百亿立方米的可燃冰资源,可供开采数百年。俄罗斯、新西兰、印度、日本等国也都发现储量可观的海底可燃冰资源。我国在东海、南海、黄海海底也发现储量丰富的可燃冰。有人估计,全世界可燃冰的储量非常巨大,至少是煤和石油总储量的2倍以上。它已被誉为未来的新能源。

可燃冰由于深藏于海洋深处和冻土层中,开采上有一定的难度,迄今世界上尚无开采海底可燃冰的成功经验。目前人们设想中的开采方案有两种,一种是把气压式泵管与接收船相连接的开采方案。气压式泵管直接伸入海底,泵管下端是一个巨大的钟形物,可罩住水底一片区域。在钟形物内还置有一台自动采掘机,它会把海底含有可燃冰的岩石和可燃冰一起掘起,并将它们粉碎搅烂成矿浆,然后由气压式泵管将矿浆输送到接收船上。在接收船上,通过加热加压等方式把可燃冰中的天然气分离出来,而剩下的海洋沉积物,往往还含有其他可利用的物质,再进行第二次、第三次分离和提取处理。最后,把无用的残土倒入海中。

另一种方案是,在海底直接设法让可燃冰分解为冰和天然气,然后像开采岩层中的天然气一样,把它直接输送到地面的储气罐中,再由储气罐输送到各个需要天然气的用户。与前一种方案比较,后一种方案的输送条件比较简单,预计可节约较多的开采成本。但问题是,可燃冰在海底的分解技术迄今还不成熟;另外这一方案也无法充分利用开采区海底可能存在的其他资源。

海洋机器人

神奇而玄妙的大海,有时水光潋滟,旖旎多姿,但转瞬之间也可能浊浪排空,惊涛拍岸,肆虐的大海会严重威胁潜水人员的生命安全。此外,恶劣的海洋环境、复杂的海况也对潜水人员设下了重重险阻。所以人类十分盼望海洋机器人问世,期待着海洋机器人去攻占海底龙宫的每一个角落。现代科学的发展,已经使制造机器人的理想变成了现实。

世界上第一个设有通讯系链、能够独立工作的海底机器人“逆戟鲸”号是美国研制的。它有5台微型处理机,有着装有5000张胶片的自动摄像机,有着非常完善的声纳装置声脉冲发送器、频闪器以及传感器等设施。这架机器人重29吨。它不需要海面工作人员“指导”其行动,但是如果遇到障碍物、摄像机失灵或电路中断等情况发生时,它还得与海面联系,因此,这架机器人在水下工作时每隔10秒钟就向工作船报告一次它的行踪及工作状态。这些报告都在工作船的示波器上显示出来,工作船上的人员可随时了解机器人工作的深度、方向、水温及发动机工作状况,必要时,工作船还可以发出控制指令,例如发动机、摄像机和录音机的关闭、镇重块的释放等。

这架机器人虽诞生不久,却立下了赫赫战功。它潜水达130多次,最深处到达海底5300米;曾在几百平方英里的太平洋洋底遨游览胜,拍下了那里的全部海底地形图;它也曾探察过意大利海岸附近的海底火山的概貌;连沉在9000英尺深处的一只可口可乐罐头盒子都没有逃出它的火眼金睛。

现在,日本又出现了海洋气象观测机器人。海洋观测机器人系统由海上浮标气象观测站和地面无线电接收中心组成。它能够在环境十分恶劣的大洋上全年实施无人化作业,并及时向地面通报观测和搜集到的气象数据资料。机器人的浮筒部分为钢质,直径达10米。立于浮筒中央的塔杆高出海面7米多,塔杆上装有气象观测器。这种机器人可用测链、钢缆和重达500多千克的铁锚牢牢地系留在水深数千米的海洋上。它的电源由空气湿电池和强碱蓄电池联合提供。这种机器人每三小时自动通报一次观测情况。观测的主要项目有风向、风速、气压、气温、日照量、水温、含盐量、流向、流速和波浪等。它先把观测到的气象和海况资料转换为数字,而后通过无线电装置自动播发出去。机器人发出的电波,由设在地面的无线电接收中心接收,然后再输入信息转换系统通报给有关部门。

日本又在继续研制一种根据指令可在海上自行移动的浮游气象观测机器人,以便更加全面地搜集海洋的各种气象和海况资料。

海洋机器人是由海洋深潜器发展而来的。海洋深潜器到目前为止大致经历了5个阶段,其中前4个阶段都是载人的。第五代深潜器是无人深潜器,多数是系缆的,少数是无缆的,都由水面工作母船来遥控。第五代深潜器实际上已经进入了海洋机器人阶段。海洋机器人也分为缆控海洋机器人和无缆遥控海洋机器人两种类型。至于怎样对海洋机器人更好地进行水下遥控,现在还有许多问题等待人们去研究。

海水在工业中的利用

如何直接利用又苦又咸的海水,已成为许多沿海国家解决淡水资源不足的一个重要课题。实际上已有许多国家在工农业生产中直接使用海水的成功经验。

美国许多沿海企业、电厂、石油和化工行业,自60年代就开始用海水作冷却水。以电力为例,1975年的淡水用量比1970年减少了50%。日本1962年工业总用水量为315.5亿立方米,其中利用海水为177.3亿立方米,占56.5%;1967年占62%。估计1995年仅电力行业使用海水作冷却水的数量近2000亿立方米。

我国许多城市,特别是北方的大连、天津、青岛、烟台等地,淡水资源一直是制约城市经济建设和发展的重要因素。直接利用海水则是这些城市解决用水困难的最佳选择。据资料记载,青岛早在1935年就在发电行业采用过以海水作冷却水。近年来,青岛已有化工、橡胶、纺织、机械、塑料、食品等26家临海企业用海水作冷却水,其中电力行业所占比例最大,约占95.5%。大连化学工业公司使用海水的历史长、效益高。1982年该公司使用海水的数量占总用水量的97.16%。到1984年,大连市已有20多家企业用海水作冷却水、卫生用水,日用水量达140万立方米,占全市日用水量的483%。天津大港电厂使用海水作冷却水,全年用水量达72亿立方米。此外,上海石化总厂、山东龙口电厂、山东潍坊碱厂等许多沿海企业均采用海水作冷却水。目前,我国沿海直接使用海水的企业近百家,年用水量为40~50亿吨,占全国城市和工业用水量650亿吨的6%。

海水灌溉农作物

目前,科学家们探索的用海水灌溉农作物的问题,不是采用海水淡化的办法,而是直接采用海水来灌溉农作物的方法:一方面寻找既可用海水直接灌溉,又可作为粮食的天然植物;另一方面是根据咸土生长的盐生植物基因,改良现有甜土粮食作物的品种,使之能适应海水浸泡的生态环境,成为喜盐农作物。美国亚利桑那大学的研究人员从1000多种靠海水浇灌生长的天然植物中,挑选出一种名叫SOS-7的品种。尽管它不能像海带那样可供人直接食用,但其果实可加工成类似麦片的主食,或榨取油料。近年来,美国专家正在墨西哥和阿联酋等国的试验农场进行SOS-7的大面积栽植研究,本世纪内可望得到推广种植。

1991年,亚利桑那大学的R·韦克斯在完成了一种耐寒盐生植物——盐角草属的杂交种试验之后,又在潜心研究高粱种子基因,通过选择育种和遗传工程,改变甜土高粱种子的基因,使之适应咸土的生态环境。与此同时,美国农业部的土壤学家W·罗宾斯将高粱与一种非洲盛产的苏丹草杂交,得出一种独特的杂交种——苏丹高粱。这种粮食植物根部分泌出一种酸,可快速溶解土壤中的盐分而吸收水分。另外,美国盐浓度实验室的负责人米希尔·谢农正在培育一种西红柿新品种,这种西红柿与我们日常食用的毫无二样,且维生素含量更高些。这种还处在试验阶段的新品种,已结出供人品尝的果实。它不像野生西红柿那样又小又涩,而是个个果实鲜红饱满,宜人口味,是制作沙拉和三明治的绝好材料。

前苏联、意大利、日本和突尼斯等国都在试用海水直接浇灌,并有收成的记录。此外,他们都出乎意料地发现,采用海水浇灌的农作物,不仅没有受到损害,反而长得更茂密。意大利曾有过报道,用海水浇灌白菜、甜菜,其长势更好,且含糖量增加。前苏联用海水浇灌苜蓿,其产量较用淡水浇灌增加9倍多。美国有关研究认为,海底中的冷海水富含硝酸盐、磷酸盐、矽酸盐等营养物质,水质纯净,不含病原菌,更有助于植物的生长。完全可以有理由相信,海水不再与农业无缘。

开发海洋中的重水

重水从外观上看和普通水一样,也是无色无味的透明液体,不能燃烧。从化学组成上也和普通水没两样,都是由两个氢原子和一个氧原子组成。所不同的是,组成重水的氢原子不是普通氢原子,而是氢的同位素氘。这氘原子核内除了一个质子外,还比普通氢原子多了一个中子,因此氘的质量要比氢原子大一倍,故而氘又被称为重氢,由氘和氧生成的化合物就叫重水。你可别小看这一个中子之差,重水和水由它引出的差异可大着哩。在物理性质上:重水比普通水重,1升重水要比1升普通水重105.6克;沸点比普通水高,普通水在100℃沸腾,而重水的沸点为101.4℃;冰点也比普通水高,普通水结成的冰在0℃就开始融化,可重水需在3.8℃。在化学性质上,许多盐可在普通水中溶解,可在重水中就相当难溶;普通水容易电解成氢气和氧气,而重水却很难电解;鱼儿离不开水,可鱼在重水中就死亡。