书城科普读物蔚蓝旖旎的海洋(新编科技大博览·B卷)
10478500000027

第27章 海洋开发篇(1)

海底石油储量巨大

据地质专家研究表明,海洋中的大陆架和大陆坡蕴藏着全球3000亿吨石油的一半以上。海底石油将显示出越来越广阔的应用前景。1960年全世界近海石油产量占石油总产量的10%左右;1970年,产量占总产量的16.8%;1980年海上石油产量占世界总产量21.8%;1985年海上石油占总产量的26.74%,2000年,已超过世界石油产量的一半以上。

煤、石油、天然气是工业化社会一刻也离不了的动力源泉。现代化的交通多数离不开石油、天然气和煤。20世纪以来,传统的燃料,煤和木材逐步让位于石油和天然气。以1950~1970年为例,短短20年间,世界石油消费量提高了三倍,天然气消费量提高了四倍。在世界各种能源消费结构中,油气所占比重达到了64%。而在西方发达国家中,其比重高达75%以上,多数工业发达国家都靠进口石油来满足本国需要。西欧各国所消费的石油96%依靠进口,开采石油量占世界石油总量1/3的美国,也要进口40%的石油才能满足本国石油需求量。日本进口的石油量占世界石油耗量的17%。这一趋势有增无减。

能源短缺,早已成为全球人类关注的焦点,因此开发海上天然气和石油,已成为各工业国家的共同行动。1907年美国在加利福尼亚州的圣巴巴腊海峡,用栈桥式井架,在水深仅有几米的海底,首次采出石油。1924年前后委内瑞拉的马拉开波湖和前苏联里海的浅滩上也先后建起了海上石油钻井架,进行石油开采。这些石油井架都用栈桥同陆地相连。直到1946年,美国建造的海上钻井平台首次打出了世界上第一口海底油井。

据科学家研究报道,海底石油和天然气遍及世界各大洲的大陆架,石油储量最多的首推波斯湾。其中有六个产油量超1000万吨,储量在10亿吨以上的特大油田。其次是委内瑞拉的马拉开波湖油田。在海底天然气储量方面,波斯湾仍居第一,北海居第二,墨西哥湾第三。

中国浅海大陆架面积近285万平方千米,其中200米水深范围内的大陆架面积共130万平方公里。经勘探研究表明,我国沿海主要有渤海、黄海、东海、台湾浅滩、珠江口、莺歌海、北部湾等七个含油盆地,总面积约为100万平方千米,现已查明有17个新生代沉积为主的中、新生代沉积盆地,估计有很多的油气资源量,大约达100亿~130亿吨,构成了环太平洋区含油气带的主体部分,是中国油气资源的重要后备基地。

位于英国北海的巨大的

海上石油钻井平台20世纪50年代海上勘探油气的国家仅六个,而现在已达100多个。海上油气钻井数,1961年为726口,而到1995年达2663口,其中美国海上油气钻井数最多。海洋石油的产量,1950年仅0.3亿吨,占世界石油总产量的5.5%;1960年为1亿吨,占世界石油总产量的9.20%;1995年为9.65亿吨,占世界石油总产量的30.08%。海洋天然气的发展速度不如石油,1980年的产量为2903.11亿立方米,1995年为4421.00亿立方米。

从1980年开始中法、中日先后在渤海中部、西部和南部进行联合勘探开发。1981年在中日合作区打了第一口预深井,日产原油近1000吨,天然气约60万立方米。同年10月又打出了一口井,日产原油270吨,天然气3.3万立方米。1982年4月,中日合作打出第一口深井,日产原油390吨,天然气7万立方米。

早期的海上钻探,通常采用固定式或活动式平台进行几十米,甚至几百米的水深作业。固定式平台既可用于钻探,也可用于石油生产。活动式钻井装置具有既保证钻井时的平稳性,又有易于活动和适应多种水深的特点。

采油是海上石油开采的最后一道工序。固定式生产平台是目前最常用,最主要的是采油平台,它有钢管架桩基平台、钢筋混凝土重力式平台、张力腿平台、绷绳塔平台。建一座固定平台,其投资量非常巨大,必须要有大面积的采油要求条件,才是可行的。

浮式生产系统有半潜式和油轮式两种,半潜式适用于900~1500米的深海区或边际小油田开采油气。油轮式的最大作业水深可达1800米。有的国家采用向海中填石砂、泥土和废料等建造人造岛来进行石油开采。

海洋:人类的盐库

食盐是人类普遍食用的调味品,是人体不可缺少的物质。据科学家统计,一个健康成年人每天要从各种饮食中吸取5~20克的盐分。这些盐分能维持人体血液的渗透压,促进血液的循环,保持新陈代谢的正常进行。

食盐也是基本的化学工业原料,制造肥皂、精炼石油、炼钢和炼铝,提炼纯碱、烧碱,生产盐酸及化学肥料氯化铵等都是以海盐为原料的。可以说,在化学工业中,凡是用到钠和氯的产品,绝大多数都源于海盐。所以说,盐不仅是人类生活的必需品,而且是化学工业之母。

我国拥有漫长的海岸线,沿海有许多海滩,平坦、广阔,多晴朗干燥的天气,对发展海盐生产有着极其有利的条件,因此,海盐产量居世界首位,而且利用海水制盐已有几千年的历史。

煮海为盐和滩晒法是从海水中提炼盐的两大方法。

煮海为盐就是把海水取上岸来,放在铁锅等设备内,用火烧,待海水烧开后,蒸发出水汽,使海水浓缩成苦卤,再使苦卤继续蒸发,蒸发到最后,食盐就会变成一粒粒像冰糖一样的晶体,从海水中跑出来。世界历史学家们公认,中国是最早从海水里提取食盐的国家。据文物考证,早在5000年前,我们的祖先已经用海水煮成食盐了。相传历史上有个风砂氏,他是跟神农氏同时代的人,首先煮海为盐。

挖盐从海水中制取盐的另一种方法是滩晒法。滩晒制盐的地方是盐田,一般建在海滩边,借用海滩逐渐升高的坡度,开出一片像扶梯似的一级一级池子,利用涨潮,或用风车或用泵抽取海水到池内。海水流过几个池子,随着风吹日晒,水分不断蒸发,海水中的盐浓度愈来愈高,最后让浓盐进入结晶池,继续蒸发直到析出食盐晶体。

在我国,滩晒法最早出现在元代,到了清朝康熙年间,大规模开辟华北长芦盐区,开始大面积滩晒食盐。其他国家海水制盐的方法基本上和我国相似。有趣的是,美国实现专利法时,第一个专利就是滩晒食盐的工艺,滩晒法经济有效,到现代还在广泛采用。

现在我国有40多万制盐工人,随着现代化的机械操作,加上科学管理,海盐生产逐年上升,每年可以生产海盐近2000万吨,占食盐总产量的80%,居世界第一位。

在制盐方法上,还有一种是冷冻法。在瑞典和前苏联等国家,他们让海水天然冷却成冰,冰几乎由淡水组成,剩下来的是苦卤,就是浓盐水。让苦卤经过几次冰冻,得到的盐水越来越浓,最后,再用人工加热的方法得到食盐晶体。这种方法只能在冬天生产,其产量不高。

海水淡化:人类的水源

人类生活和工农业生产需要的水是淡水,可是,占地球表面71%的水中,972%是海洋中的水,实际上能利用的淡水,只占世界水总量的063%。随着世界人口的增加和生活水平的提高,随着工农业生产的发展,世界淡水用量正以每年4%的速度急剧地增加。据统计,近几十年来,世界不少地区供水不足,目前估计有12亿人口缺水。

这怎么办?惟一的办法是向海洋要水。

可是,海水平均含有35%的盐分,不能使用。人喝了海水,会渴上加渴,引起机体脱水。用海水浇灌农作物,农作物会“腌死”。有些靠海的浅滩地常由于海水的浸渍而变成盐碱地,几乎寸草不长。在工业上也不能用海水,因为海水含有大量的矿物盐类,不合纯度要求,如果用来烧锅炉,会生成厚厚的锅垢,损坏锅炉。

这该怎么办呢?办法是使海水淡化,把海水中的盐分与水分开。

蒸发法是海水淡化最简单的方法,就是将海水加热蒸发,再将水蒸气冷却,提取淡水。太阳能蒸馏淡化装置就是使用这种方法。

太阳能蒸馏淡化装置,像一座座矮小的房子,屋顶用玻璃或透明塑料板组成,可以使阳光透过,照射在海水上。海水变热蒸发,水蒸气上升后,碰到玻璃会凝结成水滴,收集到两旁的淡水槽中。

蒸发法还有许多种,目前世界90%的海水淡化装置是由多级闪急蒸发法生产的。闪急蒸发法是给加热了的海水施加高压,然后突然降压,使水在瞬间蒸发的方法。所谓多级就是把许多蒸馏器串联起来,让压力下降几次使水蒸发。

离子交换树脂,我们对它已不太陌生,它就是科学家手中的一根魔杖,用它放在海水中,它可以像海绵吸水那样,吸附出海水中的盐分,使海水变成淡水。

用离子交换树脂使海水淡化的方法叫离子交换法,这种方法适应于海洋上的遇难人员应急之用。

海水淡化还有一种方法是电渗析法,就是在海水淡化装置中插入两根电极,在两极之间放入一种特种薄膜。这样就把海水淡化装置隔成三室,一个叫阳极室,一个叫阴极室,一个叫中间室。当接通电源后,奇迹就会发生,海水中的盐分会向两个电极“靠”去,使得两个极室的海水愈来愈浓,而中间室的海水逐渐被淡化。这种方法适用于中小型淡化厂,我国西沙永兴岛上的海水淡化站,是目前世界上最大的电渗析淡化装置,每天生产淡水20多吨。

在自然界有这样一种膜,它只能透过水分子,不能透过其他物质,科学家把这种膜叫做半透膜。动植物的细胞膜都是半透膜,如干大豆放在水中浸泡后会膨胀,就是因为水通过细胞向干果内部渗透的结果。

利用半透膜可以淡化海水,这种方法叫反渗透法。用人造海水淡化装置半透膜把水和海水分开。海水是盐水溶液,水分子会透过膜渗透到海水中,使海水稀释,并且产生一种压力,叫渗透压。然后,向海水加一个压力,大于渗透压,这时,海水中的水分子就会被挤出海水,透过半透膜,到纯水这边来。

反渗透法脱盐效率高。近年来,各国都在研究、推广应用,是一种前途诱人的方法。在1978年到1982年期间,世界已建成21家日产300吨以上的反渗透海水淡化厂。

向海洋要水,一些国家生发奇想,把漂浮在南太平洋的南极冰山,用船拖来,让它融化掉,供人类利用。一座小冰山可供几十万人的城市用一年,初步试施,已取得成功。

有了海水淡化技术,海洋就成了人类取之不尽、用之不竭的淡水库。

海潮发电

永不休止的海水涨落运动,蕴藏着巨大的能量,能不能把潮汐的巨大能量充分利用起来?这是自古以来人们一直在考虑的问题。1000多年来,我国劳动人民为研究潮汐的利用做出了巨大贡献。

比如,在我国的山东蓬莱县,人们利用涨潮落潮的水位差来推动磨车,碾磨谷物。在福建泉州市的东北与惠安县交界的洛阳江上,有一座我国著名的梁架式古石桥——洛阳桥,它建于宋皇五年到嘉四年(1053~1059年)。当我们游览参观了这座至今保存完好的古石桥之后,一定会惊讶地提出:在900多年前的技术条件下,数十吨重的大石梁,是怎样架到桥墩上去的呢?说来也很简单,当时的能工巧匠巧妙地利用了潮汐能。他们预先将石梁放在木浮排上,趁涨潮之际,将木排驶入两桥墩之间。随着潮涨,石梁慢慢举高,当临近高潮、石梁超过桥墩时,用不着花多大力气,就可将石梁扶正对准桥墩,待落潮一到,大石梁就稳稳地就架在桥墩上了。泉州的大潮潮差可达6米以上,高举大石梁对于巨大的潮汐能来说,简直不费吹灰之力。今天,当人们站在洛阳桥上赞叹我国人民的聪明才智之余,当然也不免为潮汐能年复一年,日复一日地白白付之东流而惋惜。

以上讲的是直接利用潮汐的方式,也就是将潮汐中蕴藏的势能和动能直接转变为另一种形式的机械能作功。这种利用方式,既不方便,又大材小用。所以,近代以来利用潮汐发电,将潮汐能转变成电能,是人们的奋斗目标。

发电机问世以后,为人们提供了利用潮汐发电的条件。

世界第一座发电厂建立以后仅仅30年的时间,即1912年,德国就在石勒苏益格——荷尔斯太因州的布苏姆建成了世界上第一座利用潮汐发电的潮汐电站。此后,随着能源需求量的增加,研究潮汐发电的国家也逐渐增多起来。法国、中国、加拿大、苏联、美国、英国、印度、澳大利亚和阿根廷等国家竞相投入大量人力物力。

潮汐所蕴藏的能量实在有着诱人的魅力。有人估算过,如果把地球上的潮汐能利用起来,每年可以发出12,400亿度的电来。

潮汐发电要比河水发电优越。它不受天气干旱的影响,也不需要因建造水库而占用耕地和移民拆迁。所以,潮汐是继煤、石油、水电之后的“第四能源”。河水发电有“白煤”之称,潮汐发电则被誉为“蓝色煤海”。

潮汐发电的原理和水力发电的原理大同小异,也是利用水的力量,通过水轮机将势能变成机械能,再由水轮机带动发电机将机械能变成电能。那么,怎么才能使水变得有力量呢?条件很简单,人们在合适的海湾口处建造起一座海堤,把入海口或海湾与大海隔开,形成水库,利用潮汐涨落时水位的升降,获得势能,从而推动水轮发电机组发电。