“铱”系统是美国摩托罗拉公司设计的全球卫星通信系统。它的天上部分是运行在7条轨道上的卫星,每条轨道上均匀地分布着11颗卫星,组成一个完整的星座。它们就像铱(Ir)原子核外的77颗电子围绕其运转一样,因此被称作铱卫星。后来经过计算证实,6条轨道就够了,于是卫星总数减为66颗,但如今仍习惯称作铱卫星。
铱卫星通过南北极运行在780千米高的轨道上,每条轨道上除布星11颗外,还多放1~2颗备用星。这些卫星可以覆盖全球,用户用手持话机直接连通卫星进行通信,而无需几米直径的抛物面天线就可以进行全球范围内的通话了。
美国的“德尔它2型”火箭、俄罗斯的“质子K型”火箭和我国的“长征2号丙改进型”火箭分别承担了铱星的发射任务。1998年5月,布星任务全部完成,11月1日,正式开通了全球的通信业务。
“铱”系统是美国于1987年提出的第一代卫星通信系统。每颗铱星质量670千克左右,功率为1200瓦,采取三轴稳定结构,每颗卫星的信道为3480个,服务寿命5~8年。“铱”系统的最大特点是通过卫星之间的接力来实现全球通信,相当于把地面蜂窝移动电话系统搬到了天上。
“铱”系统建成后,可使地球表面上的任何一个角落都被不间断地覆盖,无论在海上、陆地或空中,用户随时可以从口袋中掏出“大哥大”进行通话。它与目前使用的静止轨道卫星通信系统比较,有两大优势:一是轨道低,传输速度快,信息损耗小,通信质量大大提高;二是“铱”系统不需要专门的地面接收站,每部移动电话都可直接与卫星联络,这就使地球上人迹罕至的不毛之地、通信落后的边远地区、自然灾害现场都变得畅通无阻。
所以说,“铱”系统开始了个人卫星通信的新时代。
太空——人类的第四环境
陆地、海洋、大气层是我们人类和地球上所有生物所处的生存环境,在这些地方几乎处处有生命现象存在。陆地是地球表面没有被海水淹没的地方,是人类最主要的活动区域,称为人类的第一环境。而地球表面的大部分区域被海水所浸没,也就是常说的海洋,称为人类的第二环境。地球还被一层厚厚的大气层覆盖,大气层虽然没有陆地和海洋那样容易直接观察,但它是气候变化的重要因素和保护人类免遭宇宙线和陨星袭击的保护层,被称为第三环境。
1981年,第32届国际宇航联合会把外层空间定为人类的第四环境。所谓外层空间,一般定义为距地球表面100千米以上高度的空间,也称为太空。虽然在距地球表面几千千米的高度还有微量的地球大气的存在,但是,在100千米的高度上,空气的密度已是地表大气的百万分之一。一般的航空器的空气动力作用已十分微弱,人类借助发射各种航天器在太空中活动,这和人类在地面上驾驶汽车,在海面上驾船航行,在大气层开飞机的涵义是一样的。当然,在太空的高真空环境中,除了人类外,没有其他任何自由生存的生物。这一点和陆地上有牛羊、海洋里有游鱼、大气中有飞鸟这三个人类环境是完全不同的。
那么,第一、第二、第三、第四环境的排列次序是随意的吗?不是的。这是根据人类对自然环境的认识过程和人类文明的进程而排列的。人类文明起源于陆地。随着渔业的发展,探险和寻找新大陆活动的增加,人类活动逐渐发展到海洋。在20世纪初,人类的活动发展到大气层。直至20世纪50年代,人类才闯入寂静的太空。
人类可以开发空间资源吗
往地下打井,可以找到水,这是水资源;开矿采煤,取得能源,这是矿产资源。在太空中处于真空状态,虽然物理学上把真空也定义为物质,但是在形态上它还是“一无所有”。那么,太空中有什么资源可以开发呢?
俗话说,站得高,看得远。坐在飞机上看地面,没有东西阻挡,高山和河流会变得很小,视野非常开阔。如果在航天器中从太空看地球,那么看到的区域就更大了,甚至可以把整个地球“尽收眼底”。高和远也是一种重要的资源,称为空间高远位置资源。
一般航天器最低轨道距离地面也有200千米,这是利用空气动力学原理而制造的飞机、飞艇、热气球远远不及的;航天器可以与地球相对静止,没有国界和地理限制,是地面上巨塔、高山无法比拟的;航天器可以迅速绕地球运行,活动范围当然比飞机大得多。
航天器在太空的位置越高,它可以看到地球表面的范围就越大。那么,是不是越高越好呢?也不是。把一本《十万个为什么》放在地上,在1米的高度,封面上的字还能看清楚;但是你跑到4~5米高的二层楼看地上的这本书,封面上的字已经看不清了;如果在几百到上千千米的航天器上,可能连这本书都找不到了。所以,位置越高,范围越大,信息密度却越低。随着技术的进步,各种高分辨率的地面观测仪器被装在航天器上面,来弥补信息密度不足的缺陷。这好比你在二层楼用望远镜来看地面上的一本书一样。
利用空间高远位置资源的典型代表是地球静止轨道上的静止航天器。它悬于地球赤道上空36万千米,以与地球相同的角速度,绕地心以赤道为平面的圆形轨道旋转。一个静止航天器可以覆盖地球五分之二的区域。如果在这个圆形轨道上,以等角三角形均等分布三个航天器,就可以负责除了地球南北极地区域外的所有地区的观测和通信任务。
资源是有限的,空间高远位置资源也是如此。上述的地球静止轨道就只有惟一一条。这条比较有利的轨道位置一旦被占有,别人就无法再去开发了。
除了空间高远位置资源外,空间资源还有高真空高洁净环境资源、微重力环境资源、太阳能资源和月球资源。不过,在20世纪,真正为人类带来巨大经济效益和社会利益的还是空间高远位置资源的开发。
为什么太空垃圾会威胁航天活动
自从人类开始航天活动以来,火箭发射后的遗骸、失效的人造航天器等自行爆炸或互相碰撞,形成越来越多的空间碎片。这些空间碎片长期滞留在地球的外层空间,被称为太空垃圾。太空垃圾在不同高度、不同轨道平面上运行,在地球周围形成一层层的“包围圈”,严重污染了地球的外层空间环境。
太空垃圾的存在,使得航天器的发射和运行受到严重威胁。太空垃圾往往以极高的速度绕地球飞行,如果航天器在发射或运行过程中,与某颗空间碎片发生撞击,那么,由于它们之间相对速度非常大,航天器将会受到严重损坏。1996年7月24日,法国的一颗人造卫星突然发生翻转,不再面朝地球,完全失去控制。经过仔细观测和研究,这颗卫星用于姿态控制的重力梯度杆,被一块空间碎片撞了一下,从而使得这颗卫星失效。这次“太空事故”的“肇事者”就是欧洲的“阿里安”火箭发射后留在空间的碎片。
当然,如果载人航天器与太空垃圾相撞,后果更是不堪设想。1991年,美国的“阿特兰蒂斯号”航天飞机在飞行途中,地面监测中心发现,在航天飞机预定的轨道上有一块较大的空间碎片。为了及时避让太空垃圾,地面指挥中心的专家们紧急计算了航天飞机和这块空间碎片各自的轨道,然后命令航天飞机迅速下降。虽然后来航天飞机安然无恙,但是以太空安全飞行的距离标准衡量,这块空间碎片几乎是与航天飞机“擦肩而过”,十分危险。
一些表面积大、又很光亮的太空碎片,在太空中会反射光线,直接对天文观测和空间实验产生很大的干扰。
许多太空垃圾是原来航天器的核动力装置,如果这样的太空垃圾的轨道太低,速度越来越慢,就有可能坠落到地球表面,直接造成核辐射污染。
所以,如果不加控制地任意向太空发射航天器,地球有可能最终被厚厚的太空垃圾层封闭,使航天活动严重受阻。现在,世界各国已认识到这个问题的严重性,并从改进火箭和航天器的设计及进行国际立法来限制太空垃圾的增加。
人类发明了哪些航天器
20世纪50年代以来,越来越多的航天器闯入了寂静的太空。航天器是人类为达到某种用途发射到地球大气层外的人造天体。
航天器分为载人航天器和无人航天器。当然,从数量上来计算,大部分航天器是无人航天器。如果按照轨道的范围来区分,航天器的活动范围也可以分为两类:一类是绕地球运行;另一类是在地球以外的空间飞行。
无人航天器主要有两大类:一类是大家所熟悉的人造卫星;另一类是空间探测器。
人造卫星是航天器中最庞大的家族,它的数量占航天器总数的90%。
许多卫星是用于科学探测和科学实验的目的,所以叫科学卫星。科学卫星常常被用来对宇宙星球和其他宇宙现象作天文观测,以及作空间物理环境探测。由于太空中没有大气层的阻挡,在卫星上,不仅可以观测到天体发出的可见光,还能对它们辐射的所有电磁波进行全波观测,天文卫星往往是按照观测波段“分工”的,如红外天文卫星、紫外天文卫星、X射线天文卫星和γ射线天文卫星。科学卫星还经常被用来做科学实验,比如材料学、物理学、生物学和医药学中的许多实验,在地面上不能圆满完成,只有在太空的微重力环境中才能取得成功。
许多新技术、新发明也需要到卫星上去做试验,比如新的遥感器,新的无线电频段传输,航天器的对接,等等。这种卫星称为技术试验卫星。
应用卫星是人造卫星中的主要成员,它们和人们的生活紧密相关。应用卫星的种类繁多,有10多种,它们的数量最多,占卫星总量的四分之三,包括气象卫星、通信卫星、导航卫星、侦察卫星、地球资源卫星等。
空间探测器是对月球和其他行星进行逼近观测或直接取样探测。所以,空间探测器要以比人造卫星更大的速度,摆脱地球引力的束缚,实现深空飞行。
载人航天器包括宇宙飞船、航天飞机、空间站、轨道间飞行器。
宇宙飞船是世界上最早发明的载人航天器,它属于一次性使用的航天器。宇宙飞船可以像卫星那样绕地球运行或登月飞行。宇宙飞船还担负着一项特殊的任务,就是充当空间站与地球间的往返运输器。
航天飞机外形像一架大型飞机。它靠火箭发射,利用无损滑翔返回地面,所以可以重复使用。
空间站是一种长期停留在太空的大型航天器,可供多名航天员在那里长期居住和工作。空间站里面具有一定的生产和实验的条件。
轨道间飞行器是从空间站到其他航天器或从空间站到不同轨道位置空间站的载人运输工具。
航天器上的电源是从哪里来的
航天器由火箭发射进入太空后,就得靠自己携带的电源来工作。
我们知道,一个航天器本身的价值和发射费用都很高,所以人们在设计、制造航天器时,都想尽量延长航天器的使用寿命。然而,在许多情况下,航天器的寿命是由它的工作电源的使用寿命所决定的,也就是说,航天器可能还好好的,但是因为没电而无法正常工作。所以,根据不同航天器的特点,航天器的设计师们尽量选择和设计使用寿命较长的电源。
航天器的电源主要有三种:化学电源、太阳能电池阵电源和核电源。
化学电源分为两种:一种是银锌电池,它就是我们日常所用的电池的一种。还有一种是氢氧燃料电池,这些化学电池寿命较短,在太空可不像我们在地面,收音机里的电池用完了,随时可以弃旧换新,一般航天器是无法更换新电池的。所以,化学电池只是在早期发射的航天器中使用,或者在执行短期任务的航天器中使用。
现在,已经进入太空的航天器中,有60%采用太阳能电池阵作为电源。它是利用太阳能直接转化成电能。太阳能电池阵质量轻,结构简单,是一种长寿命电源。它们形状各异,有的像帆板一样伸出,有的贴附在航天器的表面,目的都是更多更好地接受太阳照射。太阳能电池阵常常和蓄电池一起使用,平时,太阳能电池阵在将太阳能转化成电能供航天器使用的同时,还把一部分电能存储在蓄电池中。当航天器进入地球的阴影区域时,太阳能电池阵无法工作,就可以依靠蓄电池供电,保证航天器能继续工作。
当航天器在进行星际探测时,由于离太阳太远,太阳能电池阵电源就不能正常工作了,就要采用核反应堆作为电源了。核电源也是一种长寿命电源。为了不受地球阴影的影响,许多用于军事目的的卫星也使用核电源。
把哈勃望远镜送入太空是为什么
以美国天文学家哈勃命名的太空望远镜——哈勃太空望远镜于1990年4月25日,由美国“发现号”航天飞机送入太空。哈勃太空望远镜的主要任务是:探测宇宙深空,解开宇宙起源之谜,了解太阳系、银河系和其他星系的演变过程。
哈勃太空望远镜耗资达21亿美元,从初步构想的提出、设计到建造完成,时间跨度达40多年。其实,地球上有许多质量很高的天文望远镜,为什么一定要耗费如此巨大的精力和财力,把一台天文望远镜送入太空呢?
我们知道,宇宙深空的天体离地球非常非常遥远,所以要使用分辨率很高的大型望远镜才能观测清楚。分辨率要高到什么程度呢?要能看清10千米以外的一枚1角硬币!
可是,在地球表面,即使望远镜本身制造得再好,也难以达到这个要求。