书城科普读物探索未知-化学与废物再利用
45053300000002

第2章 工业废渣用途大(1)

由于利用和处置率低,目前我国已积存了58亿吨(1吨=1×103千克,下同)工业废渣,占地面积达593平方千米,污染农田167平方千米。厂矿企业征不到渣场用地的情况相当普遍。许多化工泥渣露天弃置。这些工业废渣如经利用,则不但有重要经济效益,更有环境效益。目前全国工业废渣利用得较好的是上海地区,其灰渣利用量占排放量的60%。仅20世纪80年代初,利用灰渣生产的建材制品建造住宅,其新建面积相当于解放后上海新建住宅面积的总和。粉煤灰的利用效果亦佳,处理200多万吨就节约排灰费600多万元,获利润约1600万元,安排就业职工4100多人,回收粉煤灰中的空心微珠可做塑料填料,填入1/4的聚氯乙烯制品中,即可代用130万立方米木材,产值达5亿多元,并可安排77万人就业。废物利用是就业的重要途径之一。据调查,如果充分利用现有技术和装备,每年还可利用4000多万吨工业废渣,相当于20多亿元的资源。此废渣若用于制砖,可增产500亿块,节约农田2000多万平方米,节煤500万吨。用于生产水泥或做混凝土搀和料,可以弥补现在一年近1000吨的水泥缺口,节约大量外汇。用于铺筑道路约可降低10%的工程造价。工业废渣就地就近利用,还可节约长途运输和弃置堆存费用等。我国每年排放的4亿吨废渣中蕴藏着巨大的资源潜力,有待好好开发,其中煤渣、粉煤灰及高炉渣的利用研究得较多。

一、煤渣

煤渣是火力发电厂、工业和民用锅炉及其他设备燃煤排出的废渣,又称炉渣。其化学成分为:SiO240%~50%、Al2O330%~35%、Fe2O34%~20%、CaO 1%~5%及少量镁、硫、碳等。其矿物组成主要有钙长石、石英、莫来石、磁铁矿、黄铁矿、大量的含硅玻璃体(Al2O3·2SiO2)和活性SiO2、活性Al2O3及少量的未燃煤等。人们18世纪就开始利用煤渣制造三合土作为建筑材料。20世纪以来,世界各国都在进行煤渣的综合利用,日本、丹麦等国这方面最为成功。近年来,我国在利用火力发电厂的液态渣方面取得不少成绩。采用增钙技术(即增加氧化钙的量),使渣中的氧化钙量增加到30%左右,可以大大提高煤渣的水硬胶凝活性,使之成为水泥和墙体材料的优质原料。

煤渣做建筑材料的主要途径有:①制造砌筑砂浆和墙体材料:将细煤渣粒搀入适量粉煤灰(按2∶1混合),再加10%的石灰、3%的石膏,或加5%~10%的水泥,拌和后制成砌筑砂浆;也可以再用成型机制成标准砖、空心砖、大中小各型实心或空心砌块、大型墙板等,它们经过蒸汽养护保温(100℃)10小时后,其抗压、抗折、抗冻等各项物理、力学性能均能达到工业和民用墙体的结构要求。②做水泥混合材料:煤渣为烧结火山灰质材料,磨细后仍具有水硬胶凝性能,可同石灰和石膏等配制成水泥,其强度很高;煤渣的搀量一般控制在30%左右。③做轻混凝土骨料:一般锅炉煤渣粉碎后即可配制轻混凝土(容重低于1800千克/米3)。此外,将煤渣和石灰按3∶1混合,可作为屋面保温材料或室内地基材料。从煤渣中可回收能源:煤渣含碳,可破碎成3毫米以下的颗粒,用于烧制黏土砖;含碳量高的,也可搀入煤炭中使用。

二、粉煤灰

粉煤灰是煤燃烧产生的烟气中的细灰,通常多指火力发电厂烟道气中收集的灰,又称飞灰或烟灰。我国此废弃物数量巨大。目前年排放量近8千万吨,利用率约32%,预计到2010年,年排放32亿吨以上。粉煤灰的化学成分和矿物组成同燃煤成分、煤粉粒度、锅炉型式、燃烧情况以及收集方式等有关。一般粉煤灰的化学成分为:SiO240%~60%、Al2O315%~40%、Fe2O34%~20%、CaO 2%~10%、MgO 05%~4%。其主要物质是玻璃体,占50%~80%。所含晶体矿物主要有莫来石、石英、方解石、钙长石、硅酸钙、赤铁矿和磁铁矿等,此外还有少量未燃炭。粉煤灰的排放量与燃煤灰分有直接关系,灰分越高,排放量越大。根据我国用煤情况,一般燃烧1吨煤约产生250~300千克粉煤灰,目前每年排放3000多万吨。

从20世纪20年代开始研究粉煤灰的处理和利用问题,已取得不少成果,大多将它作为一种新的资源加以利用。美国已将粉煤灰列为12种重要的固体原料之一。我国近30多年来,在粉煤灰的开发方面也取得不少进展。但由于粉煤灰数量大,且各个工厂的烟囱都能排放,比较分散,受技术和经济条件的限制,一般还不能全部及时消化,需要堆存一部分。

粉煤灰的堆存研究有重要意义。粉煤灰、煤粉、细沙在堆放时需要适当固结,这种固结对沙漠的固结很有启发意义,后者是一个大的技术问题甚至是全球技术难题。从粉煤灰的颗粒组成和粒径级配分析,它与细沙土非常接近,其保水性能极差,表层水分很易蒸发。这样,以粉煤灰为研究对象进行其固结技术探讨,对沙漠的治理也有推动作用。因此,这个有巨大意义的课题吸引着许多科学工作者。20世纪90年代以来我国在这方面取得很多成果,日本、美欧等发达国家都很重视这项技术的研究和应用。

过去解决贮灰场扬尘污染问题的传统方法是水封(即灌水或洒水)和覆土造田,或直接种植植被。现在港口码头的煤堆仍多用水封。但这种方法工作量大,抑尘效果并不理想。新提出的固结技术就是将适当的固结剂和相应的配套操作结合起来,在灰场表面人工或机械喷洒或浇注,此时,固结剂与灰堆表层的粉煤灰发生反应,生成黏性物质,并具有一定的抗压强度(风吹不动),从而达到抑尘或某种预期的目的。新研制的固结剂已形成系列产品。其中,有适用于运行灰场、中转灰场以及碾压灰场的短效品;有针对贮满灰,作为资源封存、日后待用的长效品;还有针对灰场和地基加固用的加固固结剂和防渗用的防渗固结剂等。它们对环境保护、废物利用,乃至地球资源开发都有重要意义。

固结剂本身是一种混合物,主要成分是无机黏合剂、活性激发剂和添加剂等。其固结原理是利用固结剂中的主要成分(钙基物质和硅材料)与粉煤灰中无机极性活性基团产生化学反应,并通过少量添加剂使该作用强化而致固结剂固结,达到抗压、抗水、抗冻及整体性优良的要求。固结效果首先取决于固结剂的性质、粉煤灰的理化特征以及处理方式诸多因素。目前研究的重点放在改善固结性能上,并力求减少固结剂的用量。其配方处于保密阶段。

粉煤灰在农业生产上有多方面的应用。将它施于土壤,可改善其物理结构,提高地温和保水能力。粉煤灰富含磷、钾、镁、硼、钼、锰、钙、铁、硅等植物营养元素,适当施用能促进作物生长,增产增收。粉煤灰能明显提高农作物对麦锈病、稻瘟病、大白菜烂心病和果树黄叶病等的抗病能力,也能改善豆科作物的固氮能力。粉煤灰还主要用于改良轻重黏土、生土、酸性土、盐碱土等的土质,也用于覆盖小麦、水稻育秧,以及用于城市垃圾堆肥或生产复合肥料。

粉煤灰的工业应用取决于它的化学成分及高科技开发方式。它含有较多的氧化硅和氧化铝,它们在常温下能与氢氧化钙起化学反应,生成较稳定的水化硅酸钙和水化铝酸钙,这使粉煤灰具有水硬活性,可作为生产水泥的原料,也可用于制造各种砖,制备粉煤灰硅酸盐砌板、粉煤灰石膏板等。粉煤灰中大部分颗粒为表面光滑的玻璃体,能增进水泥拌和物的易和性,使拌和物易于运输和操作,可用做水泥砂浆和混凝土的搀和料,也作为道路路基工程材料和稳定地基材料。

在高科技的推动下,粉煤灰的利用近年来又有新发展,主要用于制备优质活性炭,表面改性后制作各种特殊材料等。粉煤灰中含有10%~22%的炭粒,这种经高温燃烧过的灰中的炭挥发分低,粒径细,而且从电镜上观察无燃烧迹象,类似煤炱,是多个碳原子的聚合体。因而是提取足球烯(C60等)的好原料,目前则可用于生产优质活性炭。粉煤灰炭易于被水蒸气活化,这是由于炭粒在燃烧过程中表面形成残缺的微晶,它们的化合价未被相邻的碳原子所饱和,因而比较活泼。这些碳原子首先与水蒸气反应:C+H2OC(H2O,C(H2O)H2+ C(O,C(O)CO。

在活化温度(一般为950℃)下,反应生成一氧化碳逸出。暴露出的炭又成为活泼的反应中心,如此不断反应,其结果是造成孔隙扩大,新孔产生,闭基孔开放,得到微孔活性炭。

此外,粉煤灰中的空心玻璃体构成空心微珠,是其一大结构特点,但其无机极性表面使它与有机组分不相容,限制了它的使用。用偶联剂和表面活性剂对其进行表面改性处理,改性剂用量不大,却能显著改善粉煤灰的表面性能。例如,粉煤灰与一端含亲水的极性基团、一端含亲油的有机基团的表面活性剂相互作用时,根据极性相亲原则,粉煤灰颗粒表面的极性基团或极性键(如Si—O—、Al—O—)与表面活性剂分子的极性端作用,而暴露其有机基团,从而使之具有亲油性。这样,经改性后的粉煤灰颗粒就能与有机组分充分均匀混合,从而可用做拒水粉(一种防止水渗过的材料),也可用做炸药、塑料、橡胶、沥青、喷涂漆料、玻璃钢及绝缘、防火材料中的填料。这些都应归功于将粉煤灰在分子水平上进行化学修饰。